membrane receptor
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 65)

H-INDEX

77
(FIVE YEARS 5)

Author(s):  
Meng-Yuan Zhang ◽  
Lingpeng Zhu ◽  
Xinhua Zheng ◽  
Tian-Hua Xie ◽  
Wenjuan Wang ◽  
...  

Background: Diabetic retinopathy (DR) is one of the most important microvascular diseases of diabetes. Our previous research demonstrated that bile acid G-protein-coupled membrane receptor (TGR5), a novel cell membrane receptor of bile acid, ameliorates the vascular endothelial cell dysfunction in DR. However, the precise mechanism leading to this alteration remains unknown. Thus, the mechanism of TGR5 in the progress of DR should be urgently explored.Methods: In this study, we established high glucose (HG)-induced human retinal vascular endothelial cells (RMECs) and streptozotocin-induced DR rat in vitro and in vivo. The expression of TGR5 was interfered through the specific agonist or siRNA to study the effect of TGR5 on the function of endothelial cell in vitro. Western blot, immunofluorescence and fluorescent probes were used to explore how TGR5 regulated mitochondrial homeostasis and related molecular mechanism. The adeno-associated virus serotype 8-shTGR5 (AAV8-shTGR5) was performed to evaluate retinal dysfunction in vivo and further confirm the role of TGR5 in DR by HE staining, TUNEL staining, PAS staining and Evans Blue dye.Results: We found that TGR5 activation alleviated HG-induced endothelial cell apoptosis by improving mitochondrial homeostasis. Additionally, TGR5 signaling reduced mitochondrial fission by suppressing the Ca2+-PKCδ/Drp1 signaling and enhanced mitophagy through the upregulation of the PINK1/Parkin signaling pathway. Furthermore, our result indicated that Drp1 inhibited mitophagy by facilitating the hexokinase (HK) 2 separation from the mitochondria and HK2-PINK1/Parkin signaling. In vivo, intraretinal microvascular abnormalities, including retinal vascular leakage, acellular capillaries and apoptosis, were poor in AAV8-shTGR5-treated group under DR, but this effect was reversed by pretreatment with the mitochondrial fission inhibitor Mdivi-1 or autophagy agonist Rapamycin.Conclusion: Overall, our findings indicated that TGR5 inhibited mitochondrial fission and enhanced mitophagy in RMECs by regulating the PKCδ/Drp1-HK2 signaling pathway. These results revealed the molecular mechanisms underlying the protective effects of TGR5 and suggested that activation of TGR5 might be a potential therapeutic strategy for DR.


Author(s):  
Kanako Kawashima ◽  
Mayuko Hirota‐Tsukimachi ◽  
Tsugumasa Toma ◽  
Ryoko Koga ◽  
Kana Iwamaru ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vinesh Dhokia ◽  
Salvador Macip

AbstractRetinoids are a group of vitamin A-related chemicals that are essential to chordate mammals. They regulate a number of basic processes, including embryogenesis and vision. From ingestion to metabolism and the subsequent cellular effects, retinoid levels are tightly regulated in the organism to prevent toxicity. One component of this network, the membrane receptor STRA6, has been shown to be essential in facilitating the cellular entry and exit of retinol. However, recent data suggests that STRA6 may not function merely as a retinoid transporter but also act as a complex signalling hub in its own right, being able to affect cell fate through the integration of retinoid signalling with other key pathways, such as those involving p53, JAK/STAT, Wnt/β catenin and calcium. This may open new therapeutic strategies in diseases like cancer, where these pathways are often compromised. Here, we look at the growing evidence regarding the novel roles of STRA6 beyond its well characterized classic functions.


CCS Chemistry ◽  
2021 ◽  
pp. 1-28
Author(s):  
Bin Xiong ◽  
Jia Wu ◽  
Jinhui Shang ◽  
Yancao Chen ◽  
Yan He ◽  
...  

Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Heng Chi ◽  
Zuowu Cao

Summary Many studies have shown that oestrogen affects late follicular development, but whether oestrogen is involved in other aspects of folliculogenesis remains unclear. In this study, two antagonists of oestrogen, tamoxifen and G15, were used to determine the effects of oestrogen on folliculogenesis. Mouse preantral follicles and cumulus–oocyte complexes (COCs) were cultured in vitro. The results showed that follicle growth stimulated using pregnant mare serum gonadotrophin (PMSG) was inhibited using tamoxifen, whether in vivo or in vitro. The average diameters, the maximum diameters of follicles and the numbers of follicles with a diameter of more than 300 μm decreased significantly following a 4-day culture with tamoxifen. G15, the antagonist of oestrogen via the membrane receptor, did not change follicular growth stimulated by PMSG in vitro. Results of in vitro maturation of COCs showed that germinal vesicle breakdown (GVBD) occurred spontaneously (95.1%) after 2 h in culture, and the GVBD ratio changed little with the addition of either oestrogen or 10 μM G15. However, first polar body (PBI) extrusion was driven by oestrogen markedly and supplementation with 10 μM G15 inhibited PBI extrusion (82.4% vs 55.0%) significantly. These results demonstrated that oestrogen promotes follicle growth through the nuclear receptor during follicle growth and then triggers the transition of metaphase to anaphase through the membrane receptor during meiotic resumption. So oestrogen plays a progressive role in the two phases of follicle growth and oocyte meiotic resumption.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ben J. Glasgow

Tear lipocalin is a primate protein that was recognized as a lipocalin from the homology of the primary sequence. The protein is most concentrated in tears and produced by lacrimal glands. Tear lipocalin is also produced in the tongue, pituitary, prostate, and the tracheobronchial tree. Tear lipocalin has been assigned a multitude of functions. The functions of tear lipocalin are inexorably linked to structural characteristics that are often shared by the lipocalin family. These characteristics result in the binding and or transport of a wide range of small hydrophobic molecules. The cavity of tear lipocalin is formed by eight strands (A–H) that are arranged in a β-barrel and are joined by loops between the β-strands. Recently, studies of the solution structure of tear lipocalin have unveiled new structural features such as cation-π interactions, which are extant throughout the lipocalin family. Lipocalin has many unique features that affect ligand specificity. These include a capacious and a flexible cavity with mobile and short overhanging loops. Specific features that confer promiscuity for ligand binding in tear lipocalin will be analyzed. The functions of tear lipocalin include the following: antimicrobial activities, scavenger of toxic and tear disruptive compounds, endonuclease activity, and inhibition of cysteine proteases. In addition, tear lipocalin binds and may modulate lipids in the tears. Such actions support roles as an acceptor for phospholipid transfer protein, heteropolymer formation to alter viscosity, and tear surface interactions. The promiscuous lipid-binding properties of tear lipocalin have created opportunities for its use as a drug carrier. Mutant analogs have been created to bind other molecules such as vascular endothelial growth factor for medicinal use. Tear lipocalin has been touted as a useful biomarker for several diseases including breast cancer, chronic obstructive pulmonary disease, diabetic retinopathy, and keratoconus. The functional possibilities of tear lipocalin dramatically expanded when a putative receptor, lipocalin-interacting membrane receptor was identified. However, opposing studies claim that lipocalin-interacting membrane receptor is not specific for lipocalin. A recent study even suggests a different function for the membrane protein. This controversy will be reviewed in light of gene expression data, which suggest that tear lipocalin has a different tissue distribution than the putative receptor. But the data show lipocalin-interacting membrane receptor is expressed on ocular surface epithelium and that a receptor function here would be rational.


Sign in / Sign up

Export Citation Format

Share Document