scholarly journals Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data

2018 ◽  
Vol 372 (3-4) ◽  
pp. 1017-1040 ◽  
Author(s):  
Masahiro Ikeda ◽  
Motohiro Sobajima
2021 ◽  
Vol 64 (2) ◽  
pp. 137-162
Author(s):  
Masahiro Ikeda ◽  
Motohiro Sobajima

2020 ◽  
Vol 17 (01) ◽  
pp. 123-139
Author(s):  
Lucas C. F. Ferreira ◽  
Jhean E. Pérez-López

We show global-in-time well-posedness and self-similarity for the semilinear wave equation with nonlinearity [Formula: see text] in a time-weighted framework based on the larger family of homogeneous Besov spaces [Formula: see text] for [Formula: see text]. As a consequence, in some cases of the power [Formula: see text], we cover a initial-data class larger than in some previous results. Our approach relies on dispersive-type estimates and a suitable [Formula: see text]-product estimate in Besov spaces.


2012 ◽  
Vol 14 (05) ◽  
pp. 1250034
Author(s):  
JIAYUN LIN ◽  
JIAN ZHAI

We consider the Cauchy problem for the damped wave equation with time-dependent damping and a power-type nonlinearity |u|ρ. For some large initial data, we will show that the solution to the damped wave equation will blow up within a finite time. Moreover, we can show the upper bound of the life-span of the solution.


Author(s):  
Shi-Zhuo Looi ◽  
Mihai Tohaneanu

Abstract We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter to a solution to the corresponding linear wave equation. The coefficients are small and decay as $|x|\to \infty$ , but are allowed to be time dependent. The proof uses local energy decay estimates to establish the decay of the $L^{6}$ norm of the solution as $t\to \infty$ .


Sign in / Sign up

Export Citation Format

Share Document