scholarly journals Compressions of free products of von Neumann algebras

2000 ◽  
Vol 316 (1) ◽  
pp. 61-82 ◽  
Author(s):  
Kenneth J. Dykema ◽  
Florin Radulescu
2015 ◽  
Vol 26 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Mihaita Berbec

In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of left–right wreath products, Proc. London Math. Soc.108 (2014) 1116–1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Γ, the left–right wreath product group 𝒢 ≔ (ℤ/2ℤ)(Γ) ⋊ (Γ × Γ) is W*-superrigid, in the sense that its group von Neumann algebra L𝒢 completely remembers the group 𝒢. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups Γ having positive first ℓ2-Betti number, the same wreath product group 𝒢 is W*-superrigid.


2021 ◽  
Vol 387 (2) ◽  
pp. 761-791
Author(s):  
Melchior Wirth ◽  
Haonan Zhang

AbstractIn this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show that this complete gradient estimate is stable under tensor products and free products and establish its validity for a number of examples. As an application we prove a complete modified logarithmic Sobolev inequality with optimal constant for Poisson-type semigroups on free group factors.


2014 ◽  
Vol 25 (03) ◽  
pp. 1450026
Author(s):  
Sören Möller

Let ℳi be a family of II1-factors, containing a common II1-subfactor 𝒩, such that [ℳi : 𝒩] ∈ ℕ0 for all i. Furthermore, let ϕ: ℕ0 → ℂ. We show that if a Hankel matrix related to ϕ is trace-class, then there exists a unique completely bounded map Mϕ on the amalgamated free product of the ℳi with amalgamation over 𝒩, which acts as a radial multiplier. Hereby, we extend a result of Haagerup and the author for radial multipliers on reduced free products of unital C*- and von Neumann algebras.


Author(s):  
Ben Hayes ◽  
David Jekel ◽  
Brent Nelson ◽  
Thomas Sinclair

Abstract This paper gives a free entropy theoretic perspective on amenable absorption results for free products of tracial von Neumann algebras. In particular, we give the 1st free entropy proof of Popa’s famous result that the generator MASA in a free group factor is maximal amenable, and we partially recover Houdayer’s results on amenable absorption and Gamma stability. Moreover, we give a unified approach to all these results using $1$-bounded entropy. We show that if ${\mathcal{M}} = {\mathcal{P}} * {\mathcal{Q}}$, then ${\mathcal{P}}$ absorbs any subalgebra of ${\mathcal{M}}$ that intersects it diffusely and that has $1$-bounded entropy zero (which includes amenable and property Gamma algebras as well as many others). In fact, for a subalgebra ${\mathcal{P}} \leq{\mathcal{M}}$ to have this absorption property, it suffices for ${\mathcal{M}}$ to admit random matrix models that have exponential concentration of measure and that “simulate” the conditional expectation onto ${\mathcal{P}}$.


2021 ◽  
pp. 1-54 ◽  
Author(s):  
Michael Brannan ◽  
Li Gao ◽  
Marius Junge

We study the “geometric Ricci curvature lower bound”, introduced previously by Junge, Li and LaRacuente, for a variety of examples including group von Neumann algebras, free orthogonal quantum groups [Formula: see text], [Formula: see text]-deformed Gaussian algebras and quantum tori. In particular, we show that Laplace operator on [Formula: see text] admits a factorization through the Laplace–Beltrami operator on the classical orthogonal group, which establishes the first connection between these two operators. Based on a non-negative curvature condition, we obtain the completely bounded version of the modified log-Sobolev inequalities for the corresponding quantum Markov semigroups on the examples mentioned above. We also prove that the “geometric Ricci curvature lower bound” is stable under tensor products and amalgamated free products. As an application, we obtain a sharp Ricci curvature lower bound for word-length semigroups on free group factors.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750075
Author(s):  
Panchugopal Bikram ◽  
Kunal Mukherjee

Analyzing endomorphisms and shift E0-semigroups of free products of von Neumann algebras, we construct uncountably many pairwise cocycle inequivalent E0-semigroups on a large class of free Araki-Woods factors. These E0-semigroups are equimodular but not modularly extendable. We also produce conjugate but not cocycle equivalent E0-semigroups on non-type I factors.


Sign in / Sign up

Export Citation Format

Share Document