scholarly journals Global existence of null-form wave equations in exterior domains

2007 ◽  
Vol 256 (3) ◽  
pp. 521-549 ◽  
Author(s):  
Jason Metcalfe ◽  
Christopher D. Sogge
2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sun-Hye Park

AbstractIn this paper, we study the wave equation with frictional damping, time delay in the velocity, and logarithmic source of the form $$ u_{tt}(x,t) - \Delta u (x,t) + \alpha u_{t} (x,t) + \beta u_{t} (x, t- \tau ) = u(x,t) \ln \bigl\vert u(x,t) \bigr\vert ^{\gamma } . $$ u t t ( x , t ) − Δ u ( x , t ) + α u t ( x , t ) + β u t ( x , t − τ ) = u ( x , t ) ln | u ( x , t ) | γ . There is much literature on wave equations with a polynomial nonlinear source, but not much on the equations with logarithmic source. We show the local and global existence of solutions using Faedo–Galerkin’s method and the logarithmic Sobolev inequality. And then we investigate the decay rates and infinite time blow-up for the solutions through the potential well and perturbed energy methods.


2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


Sign in / Sign up

Export Citation Format

Share Document