Higher differentiability of minimizers of variational integrals with variable exponents

2015 ◽  
Vol 280 (3-4) ◽  
pp. 873-892 ◽  
Author(s):  
Flavia Giannetti ◽  
Antonia Passarelli di Napoli
Author(s):  
Menita Carozza ◽  
Jan Kristensen ◽  
Antonia Passarelli di Napoli

2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Belhadj Karim ◽  
Abdellah Zerouali ◽  
Omar Chakrone

AbstractUsing the Ljusternik–Schnirelmann principle and a new variational technique, we prove that the following Steklov eigenvalue problem has infinitely many positive eigenvalue sequences:\left\{\begin{aligned} &\displaystyle\operatorname{div}(a(x,\nabla u))=0&&% \displaystyle\phantom{}\text{in }\Omega,\\ &\displaystyle a(x,\nabla u)\cdot\nu=\lambda m(x)|u|^{p(x)-2}u&&\displaystyle% \phantom{}\text{on }\partial\Omega,\end{aligned}\right.where {\Omega\subset\mathbb{R}^{N}}{(N\geq 2)} is a bounded domain of smooth boundary {\partial\Omega} and ν is the outward unit normal vector on {\partial\Omega}. The functions {m\in L^{\infty}(\partial\Omega)}, {p\colon\overline{\Omega}\mapsto\mathbb{R}} and {a\colon\overline{\Omega}\times\mathbb{R}^{N}\mapsto\mathbb{R}^{N}} satisfy appropriate conditions.


Sign in / Sign up

Export Citation Format

Share Document