scholarly journals Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

Author(s):  
Vesa Kaarnioja ◽  
Yoshihito Kazashi ◽  
Frances Y. Kuo ◽  
Fabio Nobile ◽  
Ian H. Sloan

AbstractThis paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice—a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx. 30: 529–555, 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068–1091, 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.

2015 ◽  
Vol 24 (3) ◽  
pp. 307 ◽  
Author(s):  
Yaning Liu ◽  
Edwin Jimenez ◽  
M. Yousuff Hussaini ◽  
Giray Ökten ◽  
Scott Goodrick

Rothermel's wildland surface fire model is a popular model used in wildland fire management. The original model has a large number of parameters, making uncertainty quantification challenging. In this paper, we use variance-based global sensitivity analysis to reduce the number of model parameters, and apply randomised quasi-Monte Carlo methods to quantify parametric uncertainties for the reduced model. The Monte Carlo estimator used in these calculations is based on a control variate approach applied to the sensitivity derivative enhanced sampling. The chaparral fuel model, selected from Rothermel's 11 original fuel models, is studied as an example. We obtain numerical results that improve the crude Monte Carlo sampling by factors as high as three orders of magnitude.


2017 ◽  
Vol 4 (8) ◽  
pp. 170203 ◽  
Author(s):  
D. Crevillén-García ◽  
H. Power

In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen–Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2328
Author(s):  
Mohammed Alzubaidi ◽  
Kazi N. Hasan ◽  
Lasantha Meegahapola ◽  
Mir Toufikur Rahman

This paper presents a comparative analysis of six sampling techniques to identify an efficient and accurate sampling technique to be applied to probabilistic voltage stability assessment in large-scale power systems. In this study, six different sampling techniques are investigated and compared to each other in terms of their accuracy and efficiency, including Monte Carlo (MC), three versions of Quasi-Monte Carlo (QMC), i.e., Sobol, Halton, and Latin Hypercube, Markov Chain MC (MCMC), and importance sampling (IS) technique, to evaluate their suitability for application with probabilistic voltage stability analysis in large-scale uncertain power systems. The coefficient of determination (R2) and root mean square error (RMSE) are calculated to measure the accuracy and the efficiency of the sampling techniques compared to each other. All the six sampling techniques provide more than 99% accuracy by producing a large number of wind speed random samples (8760 samples). In terms of efficiency, on the other hand, the three versions of QMC are the most efficient sampling techniques, providing more than 96% accuracy with only a small number of generated samples (150 samples) compared to other techniques.


Sign in / Sign up

Export Citation Format

Share Document