scholarly journals A pseudo-spectral Strang splitting method for linear dispersive problems with transparent boundary conditions

Author(s):  
L. Einkemmer ◽  
A. Ostermann ◽  
M. Residori

AbstractThe present work proposes a second-order time splitting scheme for a linear dispersive equation with a variable advection coefficient subject to transparent boundary conditions. For its spatial discretization, a dual Petrov–Galerkin method is considered which gives spectral accuracy. The main difficulty in constructing a second-order splitting scheme in such a situation lies in the compatibility condition at the boundaries of the sub-problems. In particular, the presence of an inflow boundary condition in the advection part results in order reduction. To overcome this issue a modified Strang splitting scheme is introduced that retains second-order accuracy. For this numerical scheme a stability analysis is conducted. In addition, numerical results are shown to support the theoretical derivations.

2020 ◽  
Vol 20 (4) ◽  
pp. 769-782
Author(s):  
Amiya K. Pani ◽  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}}. This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.


2018 ◽  
Vol 3 (1) ◽  
pp. 255-264 ◽  
Author(s):  
F. Talay Akyildiz ◽  
K. Vajravelu

AbstractIn this paper, we use a time splitting method with higher-order accuracy for the solutions (in space variables) of a class of two-dimensional semi-linear parabolic equations. Galerkin-Chebyshev pseudo spectral method is used for discretization of the spatial derivatives, and implicit Euler method is used for temporal discretization. In addition, we use this novel method to solve the well-known semi-linear Poisson-Boltzmann (PB) model equation and obtain solutions with higher-order accuracy. Furthermore, we compare the results obtained by our method for the semi-linear parabolic equation with the available analytical results in the literature for some special cases, and found excellent agreement. Furthermore, our new technique is also applicable for three-dimensional problems.


2008 ◽  
Vol 2008 ◽  
pp. 1-21 ◽  
Author(s):  
Alexander M. Alekseenko

We derive two sets of explicit homogeneous algebraic constraint-preserving boundary conditions for the second-order in time reduction of the linearized Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system. Our second-order reduction involves components of the linearized extrinsic curvature only. An initial-boundary value problem for the original linearized BSSN system is formulated and the existence of the solution is proved using the properties of the reduced system. A treatment is proposed for the full nonlinear BSSN system to construct constraint-preserving boundary conditions without invoking the second order in time reduction. Energy estimates on the principal part of the BSSN system (which is first order in temporal and second order in spatial derivatives) are obtained. Generalizations to the case of nonhomogeneous boundary data are proposed.


Sign in / Sign up

Export Citation Format

Share Document