Error bounds for minimal energy bivariate polynomial splines

2002 ◽  
Vol 93 (2) ◽  
pp. 315-331 ◽  
Author(s):  
Manfred von Golitschek ◽  
Ming-Jun Lai ◽  
Larry L. Schumaker
2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Deepesh Toshniwal ◽  
Michael DiPasquale

AbstractIn this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310(1), 325–340, 1988). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.


Author(s):  
Mahesh G. Kharatmol ◽  
Deepali Jagdale

Pyrazoline class of compounds serve as better moieties for an array of treatments, they have antibacterial, antifungal, antiinflammatory, antipyretic, diuretic, cardiovascular activities. Apart from these they also have anticancer activities. So, pertaining to its importance, many attempts are made to synthesize pyrazolines. Since conventional methods of organic synthesis are energy and time consuming. There are elaborate pathways for green and eco-friendly synthesis of pyrazoline derivatives including microwave irradiation, ultrasonic irradiation, grinding and use of ionic liquids which assures the synthesis of the same within much lesser time and by use of minimal energy


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


Author(s):  
Manuel Schaller ◽  
Friedrich Philipp ◽  
Timm Faulwasser ◽  
Karl Worthmann ◽  
Bernhard Maschke

Sign in / Sign up

Export Citation Format

Share Document