Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats

2007 ◽  
Vol 192 (3) ◽  
pp. 303-316 ◽  
Author(s):  
Tomohiro Abekawa ◽  
Koki Ito ◽  
Shin Nakagawa ◽  
Tsukasa Koyama
2013 ◽  
Vol 65 (5) ◽  
pp. 1112-1123 ◽  
Author(s):  
Marzena Maćkowiak ◽  
Rafał Guzik ◽  
Dorota Dudys ◽  
Ewelina Bator ◽  
Krzysztof Wędzony

2021 ◽  
Vol 22 (15) ◽  
pp. 8091
Author(s):  
Grace Jang ◽  
M. Bruce MacIver

Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.


1993 ◽  
Vol 7 (4) ◽  
pp. 520-523 ◽  
Author(s):  
Hisao Komatsu ◽  
Junko Nogaya ◽  
Daisuke Anabuki ◽  
Kenji Ogli

1997 ◽  
Vol 272 (3) ◽  
pp. R800-R812 ◽  
Author(s):  
T. Miyawaki ◽  
S. Suzuki ◽  
J. Minson ◽  
L. Arnolda ◽  
J. Chalmers ◽  
...  

We examined the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors within the caudal ventrolateral medulla (CVLM) in mediating the sympathetic baroreceptor reflex in anesthetized and paralyzed rats. Bilateral microinjection into CVLM of either DL-2-amino-5-phosphonovaleric acid [APV; a selective N-methyl-D-aspartic acid (NMDA) receptor antagonist, 20 mM, 100 nl] or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective AMPA/kainate receptor antagonist, 2 mM, 100 nl) alone failed to eliminate the aortic nerve stimulation-evoked hypotension and inhibition of splanchnic sympathetic nerve activity (SNA) or the cardiac-related rhythmicity of SNA. All components of the sympathetic-baroreceptor reflex were abolished when kynurenate (100 mM, 30 nl) or mixtures of APV and CNQX (10 and 1 mM, respectively, 100 or 30 nl) were injected into CVLM. Injection of APV or CNQX into CVLM reduced aortic nerve-evoked inhibitory responses of bulbospinal sympathoexcitatory neurons in rostral ventrolateral medulla (RVLM). The extent of this reduction was variable. Usually, significant inhibition was preserved. In seven RVLM neurons, intravenous injection of MK-801 (NMDA receptor antagonist, 2 mg/kg) failed to eliminate aortic nerve-evoked inhibitory responses. However, inhibitory responses were abolished when CNQX was injected into CVLM after intravenous MK-801. We conclude that both NMDA and AMPA/kainate receptors in CVLM transmit baroreceptor information.


Sign in / Sign up

Export Citation Format

Share Document