scholarly journals The effects of an acute challenge with the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, on social inhibition in adolescent and adult male rats

2013 ◽  
Vol 231 (8) ◽  
pp. 1797-1807 ◽  
Author(s):  
Melissa Morales ◽  
Linda P. Spear
1992 ◽  
Vol 76 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Michael C. Wallace ◽  
Graham M. Teasdale ◽  
James McCulloch

✓ The clinical utility of N-methyl-D-aspartate (NMDA) receptor antagonists is now being assessed in ischemic brain injury in humans. The uptake and retention of NMDA receptor antagonists in ischemic tissue will influence the design of clinical trials. The effects of permanent occlusion of the middle cerebral artery, induced 15 minutes prior to isotope administration, on the uptake of 3H-MK-801 (dizocilpine) have been assessed in the rat with quantitative autoradiography. In a group of three rats at 15 minutes after the intravenous administration of 3H-MK-801, the level (mean ± standard error of the mean) of isotopic tracer in the ischemic cortex and striatum was markedly less than that in the contralateral hemisphere (ipsilateral vs. contralateral caudate nucleus: 22 ± 4 vs. 84 ± 11 pmol/gm, p < 0.01). In contrast, in a group of five rats at 60 minutes after the intravenous administration of 3H-MK-801, the level of isotopic tracer in the ischemic cortex and striatum was greater than that in the contralateral hemisphere (ipsilateral vs. contralateral caudate nucleus: 52 ± 8 vs. 32 ± 4 pmol/gm, p < 0.05). There were no significant alterations in the specific binding of 3H-MK-801 in vitro in ischemic tissue at equivalent times. The early uptake of 3H-MK-801 into the central nervous system is dominated by the level of cerebral blood flow, whereas at later times after administration enhancement of MK-801 binding by elevated extracellular glutamate concentrations appears to be more important in determining the level of the drug in ischemic tissue.


2018 ◽  
Vol 18 (4) ◽  
pp. 687-693 ◽  
Author(s):  
Tiansheng Shi ◽  
Jing-Xia Hao ◽  
Zsuzsanna Wiesenfeld-Hallin ◽  
Xiao-Jun Xu

Abstract Background and aims The clinical management of neuropathic pain remains a challenge. We examined the interaction between gabapentin and NMDA receptor antagonists dextromethrophan and MK-801 in alleviating neuropathic pain-like behaviors in rats after spinal cord or sciatic nerve injury. Methods Female and male rats were produced with Ischemic spinal cord injury and sciatic nerve injury. Gabapentin, dextromethorphan, MK-801 or drug combinations were injected with increasing doses. Mechanical response thresholds were tested with von Frey hairs to graded mechanical touch/pressure, and ethyl chloride spray was applied to assess the cold sensitivity before and after injuries. Results In spinally injured rats, gabapentin and dextromethorphan did not affect allodynia-like behaviors at doses of 30 and 20 mg/kg, respectively. In contrast, combination of 15 or 30 mg/kg gabapentin with dextromethorphan at 10 mg/kg produced total alleviation of allodynia to mechanical or cold stimulation. Further reducing the dose of gapapentin to 7.5 mg/kg and dextromethorphan to 5 mg/kg still produced significant effect. MK-801, another NMDA receptor antagonist, also enhanced the effect of gabapentin in spinally injured rats. Similar synergistic anti-allodynic effect between dextromethorphan and gabapentin was also observed in a rat model of partial sciatic nerve injury. No increased side effect was seen following the combination between gabapentin and dextromethorphan. Conclusions In conclusion, the present study suggested that combining NMDA receptor antagonists with gabapentin could provide synergistic effect to alleviate neuropathic pain and reduced side effects. Implications Combining NMDA receptor antagonists with gabapentin may provide a new approach in alleviating neuropathic pain with increased efficacy and reduced side effects.


1998 ◽  
Vol 88 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Peter K. Zahn ◽  
Timothy J. Brennan

Background Evidence from experiments by others indicates an important role for excitatory amino acids activating spinal n-methyl-d-aspartate (NMDA) receptors in models of persistent pain. The purpose of this study was to examine the effect of intrathecal (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801), a noncompetitive NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (AP5), a competitive NMDA receptor antagonist, and N-G-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, on pain behaviors in a rat model of postoperative pain. Methods Rats with intrathecal catheters were anesthetized and underwent a plantar incision. Withdrawal threshold to punctate stimulation applied adjacent to the wound, response frequency to application of a nonpunctate stimulus applied directly to the wound, and nonevoked pain behaviors were measured before and after intrathecal administration of MK-801 or AP5. The effect of intrathecal L-NAME on mechanical hyperalgesia was also examined. Results Mechanical hyperalgesia increased and was persistent after plantar incision and was not decreased by intrathecal administration of 4, 14, or 40 nmol MK-801 or 10 nmol AP5. Only the greatest dose of AP5, 30 nmol, caused a small decrease in punctate and nonpunctate hyperalgesia. Intrathecal L-NAME had no effect. Neither intrathecal MK-801 nor intrathecal AP5 affected nonevoked pain behaviors. The greatest doses caused motor deficits. Conclusions Unlike intrathecal and systemic morphine, intrathecal NMDA receptor antagonists did not modify pain behaviors in this rat model of postoperative pain. These data suggest that NMDA receptors do not play an important role in the maintenance of postoperative pain behaviors and that NMDA receptor antagonists, administered spinally by themselves during the postoperative period, will not be useful for the treatment of postoperative pain in humans.


Sign in / Sign up

Export Citation Format

Share Document