Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

2012 ◽  
Vol 131 (10) ◽  
Author(s):  
Tanguy Van Regemorter ◽  
Maxime Guillaume ◽  
Gjergji Sini ◽  
John S. Sears ◽  
Victor Geskin ◽  
...  
2020 ◽  
Author(s):  
Julian Geiger ◽  
Michiel Sprik ◽  
Matthias May

Titanium dioxide in the anatase configuration plays an increasingly important role for photo(electro)catalytic applications due to its superior electronic properties when compared to rutile. In aqueous environments, the surface chemistry and energetic band positions upon contact with water determine charge-transfer processes over solid--solid or solid--electrolyte interfaces. Here, we study the interaction of anatase (001) and (101) surfaces with water and the resulting energetic alignment by means of hybrid density functional theory. While the alignment of band positions favours charge-transfer processes between the two facets for the pristine surfaces, we find the magnitude of this underlying driving force to crucially depend on water coverage and degree of dissociation. It can be largely alleviated for intermediate water coverages. Surface states and their passivation by dissociatively adsorbed water play an important role here. Our results suggest that anatase band positions can be controlled over a range of almost one eV via its surface chemistry.


2020 ◽  
Author(s):  
Julian Geiger ◽  
Michiel Sprik ◽  
Matthias May

Titanium dioxide in the anatase configuration plays an increasingly important role for photo(electro)catalytic applications due to its superior electronic properties when compared to rutile. In aqueous environments, the surface chemistry and energetic band positions upon contact with water determine charge-transfer processes over solid--solid or solid--electrolyte interfaces. Here, we study the interaction of anatase (001) and (101) surfaces with water and the resulting energetic alignment by means of hybrid density functional theory. While the alignment of band positions favours charge-transfer processes between the two facets for the pristine surfaces, we find the magnitude of this underlying driving force to crucially depend on water coverage and degree of dissociation. It can be largely alleviated for intermediate water coverages. Surface states and their passivation by dissociatively adsorbed water play an important role here. Our results suggest that anatase band positions can be controlled over a range of almost one eV via its surface chemistry.


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


Sign in / Sign up

Export Citation Format

Share Document