Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials

2000 ◽  
Vol 368 (4) ◽  
pp. 362-370 ◽  
Author(s):  
K. E. Murphy ◽  
E. S. Beary ◽  
M. S. Rearick ◽  
R. D. Vocke
1993 ◽  
Vol 76 (6) ◽  
pp. 1378-1384 ◽  
Author(s):  
Joseph J Thompson

Abstract A simple method was developed for the accurate and precise determination of low- and sub-ppb (ng/g) concentrations of lead in infant formula by isotope dilution inductively coupled plasma mass spectrometry using ultrasonic nebulization. After addition of a known amount of 207Pb, samples were microwave digested and the ratio 207Pb/208Pb was measured in the digests. Agreement with certified values for lead in milk powder standard reference materials was good, and isotope dilution analysis using 206Pb yielded identical results for the standard reference materials. Lead concentrations determined for several infant nutritional products were verified by an independent method. Typically, relative standard deviations of <4% were obtained with this method for lead concentrations above 2 ppb. The recovery of 2 ng of lead from an aqueous standard carried through the microwave digestion was 104 ± 4%. Infant formula (containing 0.6 ppb lead) to which 0.4 ng of natural-abundance lead had been added, to simulate a formula containing 0.9 ppb lead, was analyzed by isotope dilution, and the result was 96 ± 18% of the theoretical value. Thus, differences of 0.3 ppb lead could be clearly distinguished, and the detection limit was estimated to be 0.1 ng lead per gram of infant formula. The keys to accuracy for this method are minimizing contamination and accurately determining the concentration of lead in the isotopically enriched standard.


2021 ◽  
Author(s):  
Andrew J. Mason ◽  
Anton Vaks ◽  
Sebastian F. M. Breitenbach ◽  
John N. Hooker ◽  
Gideon M. Henderson

Abstract. We describe a new method for the measurement of U/Pb ratios by isotope dilution multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the dating of geologically young clean carbonates, particularly speleothems. The method is intended for materials containing little or no initial 232Th. We illustrate and validate the method with four examples ranging from 0.57 Ma to 20 Ma old. The new method is capable of applying the 235U-207 and 238U-234U-206Pb chronometers, common Pb and quantifiable residual 234U/238U disequilibrium permitting. These provide an alternative to the more widely used 238U-206Pb chronometer, which can be highly inaccurate for samples a few million years old, owing to uncertainties in the excess initial 234U (hence, excess radiogenic 206Pb) commonly observed in speleothems.


Sign in / Sign up

Export Citation Format

Share Document