scholarly journals On Efficiently Solvable Cases of Quantum k-SAT

Author(s):  
Marco Aldi ◽  
Niel de Beaudrap ◽  
Sevag Gharibian ◽  
Seyran Saeedi

AbstractEstimating ground state energies of local Hamiltonian models is a central problem in quantum physics. The question of whether a given local Hamiltonian is frustration-free, meaning the ground state is the simultaneous ground state of all local interaction terms, is known as the Quantum k-SAT (k-QSAT) problem. In analogy to its classical Boolean constraint satisfaction counterpart, the NP-complete problem k-SAT, Quantum k-SAT is $$\hbox {QMA}_1$$ QMA 1 -complete (for $$k\ge 3$$ k ≥ 3 , and where $$\hbox {QMA}_1$$ QMA 1 is a quantum generalization of NP with one-sided error), and thus likely intractable. But whereas k-SAT has been well-studied for special tractable cases, as well as from a “parameterized complexity” perspective, much less is known in similar settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to k-QSAT instances which have a “dimer covering” or “matching”; such systems are known to be frustration-free, but it remains open whether one can efficiently compute a ground state. Our results fall into three directions, all of which relate to the “dimer covering” setting: (1) We give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two interaction terms or clauses. (2) We give a “parameterized algorithm” for k-QSAT instances from a certain non-trivial class, which allows us to obtain exponential speedups over brute force methods in some cases. This is achieved by reducing the problem to solving for a single root of a single univariate polynomial. An explicit family of hypergraphs, denoted Crash, for which such a speedup is obtained is introduced. (3) We conduct a structural graph theoretic study of 3-QSAT interaction graphs which have a “dimer covering”. We remark that the results of (2), in particular, introduce a number of new tools to the study of Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from algebraic geometry.

2021 ◽  
Author(s):  
Mulani Tabssum Tayyab

In quantum physics it is important that classical molecular dynamics studies of nanomachines may not give an accurate representation of their performance. Luckily another strategy, interior facilitate quantum Monte Carlo, a further developed method for processing quantum mechanical ground-state energies and wavefunctions, has the possible ability to demonstrate these frameworks. Some significant models show that the quantum ground state for some body frameworks like those of interest in nanotechnology has a subjectively unexpected construction in comparison to that got from a sub-atomic elements computation which displayed confusion and gross insecurities at energies of just a small amount of the ground-state energy. This outcome projects vulnerability on the unwavering quality of utilizing the sub-atomic elements strategy to ascertain the construction or some other dynamical amount pertinent to nanotechnology.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850016 ◽  
Author(s):  
Jiang Yi ◽  
Feiwu Chen

Applications of the multireference linearized coupled-cluster single-doubles (MRLCCSD) to atomic and molecular systems have been carried out. MRLCCSD is exploited to calculate the ground-state energies of HF, H2O, NH3, CH4, N2, BF, and C2with basis sets, cc-pVDZ, cc-pVTZ and cc-pVQZ. The equilibrium bond lengths and vibration frequencies of HF, HCl, Li2, LiH, LiF, LiBr, BH, and AlF are computed with MRLCCSD and compared with the experimental data. The electron affinities of F and CH as well as the proton affinities of H2O and NH3are also calculated with MRLCCSD. These results are compared with the results produced with second-order perturbation theory, linearized coupled-cluster doubles (LCCD), coupled-cluster doubles (CCD), coupled-cluster singles and doubles (CCSD), CCSD with perturbative triples correction (CCSD(T)). It is shown that all results obtained with MRLCCSD are reliable and accurate.


2008 ◽  
Vol 109 (5) ◽  
pp. 873-880 ◽  
Author(s):  
Amar N. Sil ◽  
Mariusz Pawlak ◽  
Prasanta K. Mukherjee ◽  
Mirosław Bylicki

2003 ◽  
Vol 18 (06) ◽  
pp. 879-899 ◽  
Author(s):  
V. A. FATEEV ◽  
E. ONOFRI

The parametric families of integrable boundary affine Toda theories are considered. We calculate boundary one-point functions and propose boundary S-matrices in these theories. We use boundary one-point functions and S-matrix amplitudes to derive boundary ground state energies and exact solutions describing classical vacuum configurations.


1990 ◽  
Vol 41 (7) ◽  
pp. 4049-4051 ◽  
Author(s):  
I. C. da Cunha Lima ◽  
M. Fabbri ◽  
A. Ferreira da Silva ◽  
A. Troper

Sign in / Sign up

Export Citation Format

Share Document