scholarly journals $$({{\,\mathrm{\mathrm {SL}}\,}}(N),q)$$-Opers, the q-Langlands Correspondence, and Quantum/Classical Duality

Author(s):  
Peter Koroteev ◽  
Daniel S. Sage ◽  
Anton M. Zeitlin
Astérisque ◽  
2019 ◽  
Vol 409 ◽  
pp. 1-226 ◽  
Author(s):  
Frank CALEGARI ◽  
Akshay VENKATESH

2017 ◽  
Vol 69 (1) ◽  
pp. 107-129
Author(s):  
Masoud Kamgarpour

AbstractUnder the local Langlands correspondence, the conductor of an irreducible representation of Gln(F) is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Dalibor Biolek ◽  
Zdeněk Biolek ◽  
Viera Biolková

The duality of nonlinear systems built from higher-order two-terminal Chua’s elements and independent voltage and current sources is analyzed. Two different approaches are now being generalized for circuits with higher-order elements: the classical duality principle, hitherto restricted to circuits built from R-C-L elements, and Chua’s duality of memristive circuits. The so-called storeyed structure of fundamental elements is used as an integrating platform of both approaches. It is shown that the combination of associated flip-type and shift-type transformations of the circuit elements can generate dual networks with interesting features. The regularities of the duality can be used for modeling, hardware emulation, or synthesis of systems built from elements that are not commonly available, such as memristors, via classical dual elements.


2009 ◽  
Vol 2009 ◽  
pp. 1-14
Author(s):  
Do Ngoc Diep

We expose a new procedure of quantization of fields, based on the Geometric Langlands Correspondence. Starting from fields in the target space, we first reduce them to the case of fields on one-complex-variable target space, at the same time increasing the possible symmetry groupGL. Use the sigma model and momentum maps, we reduce the problem to a problem of quantization of trivial vector bundles with connection over the space dual to the Lie algebra of the symmetry groupGL. After that we quantize the vector bundles with connection over the coadjoint orbits of the symmetry groupGL. Use the electric-magnetic duality to pass to the Langlands dual Lie groupG. Therefore, we have some affine Kac-Moody loop algebra of meromorphic functions with values in Lie algebra=Lie(G). Use the construction of Fock space reprsentations to have representations of such affine loop algebra. And finally, we have the automorphic representations of the corresponding Langlands-dual Lie groupsG.


1979 ◽  
Vol 20 (1) ◽  
pp. 57-70 ◽  
Author(s):  
J.R. McMullen ◽  
J.F. Price

A duality theory for finite abelian hypergroups over fairly general fields is presented, which extends the classical duality for finite abelian groups. In this precise sense the set of conjugacy classes and the set of characters of a finite group are dual as hypergroups.


2018 ◽  
Vol 154 (7) ◽  
pp. 1473-1507
Author(s):  
Thomas Lanard

Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.


Sign in / Sign up

Export Citation Format

Share Document