scholarly journals Regularity of Characteristic Exponents and Linear Response for Transfer Operator Cocycles

2021 ◽  
Vol 383 (2) ◽  
pp. 1243-1289
Author(s):  
Julien Sedro ◽  
Hans Henrik Rugh
2020 ◽  
Author(s):  
Manuel Santos Gutiérrez ◽  
Valerio Lucarini

<p>Dynamical systems are often subject to forcing or changes in their governing parameters and it is of interest to study</p><p>how this affects their statistical properties. A prominent real-life example of this class of problems is the investigation</p><p>of climate response to perturbations. In this respect, it is crucial to determine what the linear response of a system is</p><p>as a quantification of sensitivity. Alongside previous work, here we use the transfer operator formalism to study the</p><p>response and sensitivity of a dynamical system undergoing perturbations. By projecting the transfer operator onto a</p><p>suitable finite dimensional vector space, one is able to obtain matrix representations which determine finite Markov</p><p>processes. Further, using perturbation theory for Markov matrices, it is possible to determine the linear and nonlinear</p><p>response of the system given a prescribed forcing. Here, we suggest a methodology which puts the scope on the</p><p>evolution law of densities (the Liouville/Fokker-Planck equation), allowing to effectively calculate the sensitivity and</p><p>response of two representative dynamical systems.</p>


2021 ◽  
pp. 1-30
Author(s):  
DAVOR DRAGIČEVIĆ ◽  
JULIEN SEDRO

Abstract We consider families of random products of close-by Anosov diffeomorphisms, and show that statistical stability and linear response hold for the associated families of equivariant and stationary measures. Our analysis relies on the study of the top Oseledets space of a parametrized transfer operator cocycle, as well as ad-hoc abstract perturbation statements. As an application, we show that, when the quenched central limit theorem (CLT) holds, under the conditions that ensure linear response for our cocycle, the variance in the CLT depends differentiably on the parameter.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Stefano Galatolo ◽  
Alfonso Sorrentino

<p style='text-indent:20px;'>We prove quantitative statistical stability results for a large class of small <inline-formula><tex-math id="M1">\begin{document}$ C^{0} $\end{document}</tex-math></inline-formula> perturbations of circle diffeomorphisms with irrational rotation numbers. We show that if the rotation number is Diophantine the invariant measure varies in a Hölder way under perturbation of the map and the Hölder exponent depends on the Diophantine type of the rotation number. The set of admissible perturbations includes the ones coming from spatial discretization and hence numerical truncation. We also show linear response for smooth perturbations that preserve the rotation number, as well as for more general ones. This is done by means of classical tools from KAM theory, while the quantitative stability results are obtained by transfer operator techniques applied to suitable spaces of measures with a weak topology.</p>


Author(s):  
Keinosuke Kobayashi

Equidensitometry as developed by E. Lau and W. Krug has been little used in the analysis of ordinary electron photomicrographs, yet its application to the high voltage electron images proves merits of this procedure. Proper sets (families) of equidensities as shown in the next page are able to reveal the contour map of mass thickness distribution in thick noncrystalline specimens. The change in density of the electron micrograph is directly related to the mass thickness of corresponding area in the specimen, because of the linear response of photographic emulsions to electrons and the logarithmic relation between electron opacity and mass thickness of amorphous object.This linearity is verified by equidensitometry of a spherical solid object as shown in Fig. 1a. The object is a large (1 μ) homogeneous particle of polystyrene. Fig. 1b is a composite print of three equidensities of the 1st order prepared from Fig. 1a.


2016 ◽  
Vol 545 ◽  
pp. 109-121 ◽  
Author(s):  
B Villazán ◽  
FG Brun ◽  
V González‑Ortiz ◽  
F Moreno‑Marín ◽  
TJ Bouma ◽  
...  

2020 ◽  
Vol 2020 (7) ◽  
pp. 143-1-143-6 ◽  
Author(s):  
Yasuyuki Fujihara ◽  
Maasa Murata ◽  
Shota Nakayama ◽  
Rihito Kuroda ◽  
Shigetoshi Sugawa

This paper presents a prototype linear response single exposure CMOS image sensor with two-stage lateral overflow integration trench capacitors (LOFITreCs) exhibiting over 120dB dynamic range with 11.4Me- full well capacity (FWC) and maximum signal-to-noise ratio (SNR) of 70dB. The measured SNR at all switching points were over 35dB thanks to the proposed two-stage LOFITreCs.


Author(s):  
Daniel Lambrecht ◽  
Eric Berquist

We present a first principles approach for decomposing molecular linear response properties into orthogonal (additive) plus non-orthogonal/cooperative contributions. This approach enables one to 1) identify the contributions of molecular building blocks like functional groups or monomer units to a given response property and 2) quantify cooperativity between these contributions. In analogy to the self consistent field method for molecular interactions, SCF(MI), we term our approach LR(MI). The theory, implementation and pilot data are described in detail in the manuscript and supporting information.


Sign in / Sign up

Export Citation Format

Share Document