kam theory
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng ◽  
Cristian Mendico ◽  
Kaizhi Wang

AbstractWe study the asymptotic behavior of solutions to the constrained MFG system as the time horizon T goes to infinity. For this purpose, we analyze first Hamilton–Jacobi equations with state constraints from the viewpoint of weak KAM theory, constructing a Mather measure for the associated variational problem. Using these results, we show that a solution to the constrained ergodic mean field games system exists and the ergodic constant is unique. Finally, we prove that any solution of the first-order constrained MFG problem on [0, T] converges to the solution of the ergodic system as T goes to infinity.


Author(s):  
L. Zanelli ◽  
F. Mandreoli ◽  
F. Cardin

AbstractWe present, through weak KAM theory, an investigation of the stationary Hartree equation in the periodic setting. More in details, we study the Mean Field asymptotics of quantum many body operators thanks to various integral identities providing the energy of the ground state and the minimum value of the Hartree functional. Finally, the ground state of the multiple-well case is studied in the semiclassical asymptotics thanks to the Agmon metric.


Author(s):  
Senada Kalabušić ◽  
Esmir Pilav

Using the Kolmogorov–Arnold–Mozer (KAM) theory, we investigate the stability of May’s host–parasitoid model’s solutions with proportional stocking upon the parasitoid population. We show the existence of the extinction, boundary, and interior equilibrium points. When the host population’s intrinsic growth rate and the releasement coefficient are less than one, both populations are extinct. There are an infinite number of boundary equilibrium points, which are nonhyperbolic and stable. Under certain conditions, there appear 1:1 nonisolated resonance fixed points for which we thoroughly described dynamics. Regarding the interior equilibrium point, we use the KAM theory to prove its stability. We give a biological meaning of obtained results. Using the software package Mathematica, we produce numerical simulations to support our findings.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Stefano Galatolo ◽  
Alfonso Sorrentino

<p style='text-indent:20px;'>We prove quantitative statistical stability results for a large class of small <inline-formula><tex-math id="M1">\begin{document}$ C^{0} $\end{document}</tex-math></inline-formula> perturbations of circle diffeomorphisms with irrational rotation numbers. We show that if the rotation number is Diophantine the invariant measure varies in a Hölder way under perturbation of the map and the Hölder exponent depends on the Diophantine type of the rotation number. The set of admissible perturbations includes the ones coming from spatial discretization and hence numerical truncation. We also show linear response for smooth perturbations that preserve the rotation number, as well as for more general ones. This is done by means of classical tools from KAM theory, while the quantitative stability results are obtained by transfer operator techniques applied to suitable spaces of measures with a weak topology.</p>


2021 ◽  
Vol 17 (3) ◽  
pp. 247-261
Author(s):  
A. P. Markeev ◽  

The main purpose of this paper is to investigate nonlinear oscillations of the gravitational dipole in a neighborhood of its nominal mode. The orbit of the center of mass is assumed to be circular or elliptic with small eccentricity. Consideration is given both to planar and arbitrary spatial deviations of the gravitational dipole from its position corresponding to the nominal mode. The analysis is based on the classical Lyapunov and Poincaré methods and the methods of Kolmogorov – Arnold – Moser (KAM) theory. The necessary calculations are performed using computer algorithms. An analytic representation is given for conditionally periodic oscillations. Special attention is paid to the problem of the existence of periodic motions of the gravitational dipole and their Lyapunov stability, formal stability (stability in an arbitrarily high, but finite, nonlinear approximation) and stability for most (in the sense of Lebesgue measure) initial conditions.


2021 ◽  
Vol 17 (4) ◽  
pp. 369-390
Author(s):  
A. Ligȩza ◽  
◽  
H. Żoła̧dek ◽  

We consider the situation where three heavy gravitational bodies form the Lagrange configuration rotating in a fixed plane and the fourth body of negligible mass moves in this plane. We present three cases of so-called libration points and we study their stability using linear approximation and KAM theory. In some situations we prove the Lyapunov stability for generic values of some parameter of the problem.


Sign in / Sign up

Export Citation Format

Share Document