logarithmic relation
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiong Chen ◽  
Deshan Cui ◽  
Yu Chen ◽  
Xianyu Tao ◽  
Wei Xiang

Earthquakes or cyclic loadings cause significant changes in the strength characteristics of soil. These changes, especially for sliding zone soil, can lead to catastrophic landslides. Taking into account this characteristic, this paper investigates the effects of prior cyclic loading on the consolidated undrained triaxial compression strength of sliding zone soil with the KTL triaxial automated system. Our experimental results indicate that the prior cyclic loading has a significant effect on the strength behaviour of saturated sliding zone soil. Under different confining pressures, cycle periods, and number of cycles, the samples exhibit the characteristics of strain-hardening. Deviatoric stress under cyclic loading condition is smaller than that with monotonic loading condition under different confining pressures, cycle periods, and number of cycles. As the confining pressure and cycle period increase, the failure stress ratio decreases. The axial strain exhibits a steep rise first and then stays stable under a cycle period of 90 s, while the axial strain shows a linear increase with an increase in the number of cycles under a cycle period of 10 s under confining pressures of 100 kPa and 400 kPa, respectively. The logarithmic relation correlates well with the failure stress ratio in the cyclic loading tests, which preliminary validates the applicability of logarithmic relation for sliding zone soil influenced by prior cyclic loading, providing a theoretical basis and guidance for the further understanding of strength characteristics of sliding zone soil.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Antoine Deblais ◽  
Elyn den Hollander ◽  
Claire Boucon ◽  
Annelies E. Blok ◽  
Bastiaan Veltkamp ◽  
...  

AbstractThe “mouthfeel” of food products is a key factor in our perception of food quality and in our appreciation of food products. Extensive research has been performed on what determines mouthfeel, and how it can be linked to laboratory measurements and eventually predicted. This was mainly done on the basis of simple models that do not accurately take the rheology of the food products into account. Here, we show that the subjectively perceived “thickness” of liquid foods, or the force needed to make the sample flow or deform in the mouth, can be directly related to their non-Newtonian rheology. Measuring the shear-thinning rheology and modeling the squeeze flow between the tongue and the palate in the oral cavity allows to predict how a panel perceives soup “thickness”. This is done for various liquid bouillons with viscosities ranging from that of water to low-viscous soups and for high-viscous xanthan gum solutions. Our findings show that our tongues, just like our eyes and ears, are logarithmic measuring instruments in agreement with the Weber-Fechner law that predicts a logarithmic relation between stimulus amplitude and perceived strength. Our results pave the way for more accurate prediction of mouthfeel characteristics of liquid food products.


2018 ◽  
Vol 19 (4) ◽  
pp. 362-385 ◽  
Author(s):  
Patrick Borges ◽  
Luciana G. Godoi

The log-linear Poisson model, characterized by linear variance function and a logarithmic relation between means and covariates, embedded in the exponential family regression framework provided by generalized linear models (GLM) is still the standard approach for analyzing count data responses with regression models. In practice, however, count data are often overdispersed and, thus, not conducive to Poisson regression. Therefore, the main goal of this article is to introduce a log-linear model based on the P[Formula: see text]lya–Aeppli (PA) distribution, which is an extension of the Poisson distribution by including a dispersion parameter ρ, to address the problem of overdispersion. Maximum likelihood (ML) estimation procedure is discussed as well as a test for determining the need for a PA regression over a standard Poisson regression. In addition, a simple EM-type algorithm for iteratively computing ML estimates is presented. In order to study departures from the error assumption as well as the presence of outliers, we perform residual analysis based on the standardized Pearson residuals. Furthermore, for different parameter settings and sample sizes, various simulations are performed. Finally, we also illustrated the new method on three real datasets, two of them are from biological researches and the other is from a violence study.


2014 ◽  
Vol 4 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Bernard Thole

One of the parameters that impact on fluoride sorption capacities of materials in water defluoridation is initial concentration. Water from various sources will have different fluoride concentrations; as such the employment of a particular media in defluoridation requires information on how the media will perform in different concentrations. Consequently, research was carried out to determine how initial fluoride concentrations in raw water affect capacity in defluoridation with bauxite, gypsum, magnesite and their composite, and to investigate the possibility of predicting loading capacity of their composite filter through initial fluoride concentration to optimize their application in defluoridation. The results showed that sorption capacities increased with increase in initial concentrations. However, higher starting concentrations resulted in larger residual fluoride concentrations; as such the benefit of large sorption capacities obtained was overshadowed. Polynomial relations of capacity (Cs, mg/g) and initial concentration (Co, mg/l), were obtained for bauxite and gypsum. Magnesite obtained a logarithmic relation for Cs and Co. A power relation was obtained between Cs and Co for their composite, Cs = 0.0328C1.20160. Approximation of capacities of this composite from initial fluoride concentrations was feasible. Water defluoridation has become important as a result of dental and skeletal fluorosis.


2012 ◽  
Vol 538-541 ◽  
pp. 2342-2345
Author(s):  
Jun Li ◽  
Dong Ye ◽  
Yong Mei Chen ◽  
Jie Su ◽  
Kun Yu Zhao

Abstract. The pitting corrosion behavior of two kinds (W and Cu-free; W and Cu-bearing) of supermartensitic stainless steels (SMSS) were studied in CO2-saturated chloride solution with three chloric ion concentration: 21200, 50000, 100000ppm, and four different temperatures:19, 40, 60, 80°C by potentiodynamic polarization measurement. The results indicate that the pitting potential decreased with temperature increasing, and in a logarithmic relation with the chlorine concentration in both alloys. The pitting potential of supermartensitic stainless steel is increased by together adding tungsten and copper.


2008 ◽  
Vol 15 (6) ◽  
pp. 881-891 ◽  
Author(s):  
A. M. Tarquis ◽  
R. J. Heck ◽  
J. B. Grau ◽  
J. Fabregat ◽  
M. E. Sanchez ◽  
...  

Abstract. With the advent of modern non-destructive tomography techniques, there have been many attempts to analyze 3-D pore space features mainly concentrating on soil structure. This analysis opens a challenging opportunity to develop techniques for quantifying and describe pore space properties, one of them being fractal analysis. Undisturbed soil samples were collected from four horizons of Brazilian soil and 3-D images at 45 μm resolution. Four different threshold criteria were used to transform computed tomography (CT) grey-scale imagery into binary imagery (pore/solid) to estimate their mass fractal dimension (Dm) and entropy dimension (D1). Each threshold criteria had a direct influence on the porosity obtained, varying from 8 to 24% in one of the samples, and on the fractal dimensions. Linear scaling was observed over all the cube sizes, however depending on the range of cube sizes used in the analysis, Dm could vary from 3.00 to 2.20, realizing that the threshold influenced mainly the scaling in the smallest cubes (length of size from 1 to 16 voxels). Dm and D1 showed a logarithmic relation with the apparent porosity in the image, however, the increase of both values respect to porosity defined a characteristic feature for each horizon that can be related to soil texture and depth.


2002 ◽  
Vol 17 (8) ◽  
pp. 1954-1959 ◽  
Author(s):  
R. Morales ◽  
S. Seetharaman ◽  
V. Agarwala

In this work, Fe2Mo intermetallic powder, produced by H2 gas reduction of Fe2MoO4 was characterized by techniques like x-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM studies confirmed the presence of nano- and microcrystalline grains of Fe2Mo. The above powders when compressed uniaxially showed a logarithmic relation with “relative density”, δr, of the compacts. The multiple compaction mechanisms were analyzed by Kawakita's and Balshin's models. Vickers hardness number, VHN, was found to increase linearly with δr of the compacts. The hardness of Fe2Mo intermetallic when δr = 1 was estimated as 343 VHN. Using Tabor's analysis, the yield strength of Fe2Mo was found to be about 1100 MPa. This value was further confirmed from the details of relative broadening (112) Bragg peak of Fe2Mo obtained from XRD analyses of Fe2Mo at different compaction pressures.


1993 ◽  
Vol 29 (4) ◽  
pp. 449-459 ◽  
Author(s):  
G. N. Zanakis ◽  
R. H. Ellis ◽  
R. J. Summerfield

SummaryReports that an Indonesian soyabean (Glycine max) line (TGm737p) shows greater seed storage longevity than an American cultivar (Bossier), and that the cross between them (TG×536–02D) is intermediate between the two parents in this regard, were investigated by growing all three genotypes under identical conditions (30°C/20°C, 12 h d-1 photoperiod) in a plastics house. Seeds were harvested when moisture content had declined naturally to 14–15% (wet basis), and then stored hermetically at five different moisture contents at 40°C. Analyses of the resultant seed survival curves revealed that the seed lot constant Ki (a measure of potential longevity) was greatest in TGm737p and least in cv. Bossier, the cross being much closer to the American parent in this regard. The negative logarithmic relation between σ (standard deviation of the frequency distribution of seed deaths in time) and moisture content did not differ (p > 0.10) among the three genotypes. Moreover, this relation was close to that predicted by earlier results for four different genotypes. Similarly, there was no significant difference (p > 0.25) among genotypes in the negative semi-logarithmic relation between σ and seed equilibrium relative humidity (rh): the regression slope was equivalent to a doubling of longevity for each 8.0% reduction in rh. Finally, comparison of the negative logarithmic relation between absolute longevity (50% viability period) and seed moisture content confirmed that TGm737p showed greatest longevity (p > 0.005), but failed to show a difference in absolute longevity between cv. Bossier and the cross (p > 0.25). The results confirm that the seed viability equation of Ellis and Roberts (1980a, b) provides a framework within which the seed longevity of different genotypes can be compared. They suggest too that there is considerable doubt as to whether or not the greater potential longevity of the Indonesian line TGm737p has been incorporated successfully into the cross TG×536–02D.Longevidad de la semilla de soja


Sign in / Sign up

Export Citation Format

Share Document