scholarly journals Approximation Theorems for the Schrödinger Equation and Quantum Vortex Reconnection

Author(s):  
Alberto Enciso ◽  
Daniel Peralta-Salas

AbstractWe prove the existence of smooth solutions to the Gross–Pitaevskii equation on $$\mathbb {R}^3$$ R 3 that feature arbitrarily complex quantum vortex reconnections. We can track the evolution of the vortices during the whole process. This permits to describe the reconnection events in detail and verify that this scenario exhibits the properties observed in experiments and numerics, such as the $$t^{1/2}$$ t 1 / 2 and change of parity laws. We are mostly interested in solutions tending to 1 at infinity, which have finite Ginzburg–Landau energy and physically correspond to the presence of a background chemical potential, but we also consider the cases of Schwartz initial data and of the Gross–Pitaevskii equation on the torus. In the proof, the Gross–Pitaevskii equation operates in a nearly linear regime, so the result applies to a wide range of nonlinear Schrödinger equations. Indeed, an essential ingredient in the proofs is the development of novel global approximation theorems for the Schrödinger equation on $$\mathbb {R}^n$$ R n . Specifically, we prove a qualitative approximation result that applies for solutions defined on very general spacetime sets and also a quantitative result for solutions on product sets in spacetime $$D\times \mathbb {R}$$ D × R . This hinges on frequency-dependent estimates for the Helmholtz–Yukawa equation that are of independent interest.

2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Juan Belmonte-Beitia

We give a proof of the existence of stationary bright soliton solutions of the cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity. By using bifurcation theory, we prove that the norm of the positive solution goes to zero as the parameterλ, called chemical potential in the Bose-Einstein condensates' literature, tends to zero. Moreover, we solve the time-dependent cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearities by using a numerical method.


2019 ◽  
Vol 372 (1) ◽  
pp. 1-69 ◽  
Author(s):  
Maximilian Jeblick ◽  
Nikolai Leopold ◽  
Peter Pickl

Abstract We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by $$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$Wβ(x)=N-1+2βW(Nβx), for any $$\beta >0$$β>0, or to be given by $$V_N(x)=e^{2N} V(e^N x)$$VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported $$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential $$V_N$$VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.


Science ◽  
2020 ◽  
Vol 368 (6493) ◽  
pp. 856-859 ◽  
Author(s):  
Sebabrata Mukherjee ◽  
Mikael C. Rechtsman

Topological protection is a universal phenomenon that applies to electronic, photonic, ultracold atomic, mechanical, and other systems. The vast majority of research in these systems has explored the linear domain, where interparticle interactions are negligible. We experimentally observed solitons—waves that propagate without changing shape as a result of nonlinearity—in a photonic Floquet topological insulator. These solitons exhibited distinct behavior in that they executed cyclotron-like orbits associated with the underlying topology. Specifically, we used a waveguide array with periodic variations along the waveguide axis, giving rise to nonzero winding number, and the nonlinearity arose from the optical Kerr effect. This result applies to a range of bosonic systems because it is described by the focusing nonlinear Schrödinger equation (equivalently, the attractive Gross-Pitaevskii equation).


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Renato Colucci ◽  
Gerardo R. Chacón ◽  
Andrés Vargas

We study the dynamical behavior of solutions of ann-dimensional nonlinear Schrödinger equation with potential and linear derivative terms under the presence of phenomenological damping. This equation is a general version of the dissipative Gross-Pitaevskii equation including terms with first-order derivatives in the spatial coordinates which allow for rotational contributions. We obtain conditions for the existence of a global attractor and find bounds for its dimension.


2021 ◽  
Author(s):  
Shahid Iqbal

Abstract Information entropy has played a key role in a wide range of disciplines, for instance, classical and quantum information processing, quantum computing, quantum dynamics and quantum metrology. Here, we develop an information theoretic formalism using Shannon entropy, to investigate the quantum dynamics of Hamiltonian systems with position-dependent mass. Such systems are of fundamental interest in many areas, for instance, condensed matter, mathematical physics and foundations of quantum mechanics. We explore the phenomenon of fractional revivals for the temporal evolution of wave-packet solutions of Schrödinger equation with position-dependent mass by studying, analytically and numerically, the time-development of Shannon information entropy in position and momentum spaces. It is shown by our numerical results that the effect of spatially varying mass on the fractional revivals can not be fully harnessed using conventional measures, for instance, autocorrelation function. However, based on our numerical analysis it is concluded that information entropy is not only more sensitive to identify the fractional revivals but it also better elucidates the effect of position-dependent mass on the structure of fractional revivals in the form of symmetry breaking.


Author(s):  
Ali Başhan

The present manuscript include, finite difference method and quartic B-spline based differential quadrature method (FDM-DQM) to obtain the numerical solutions for the nonlinear Schr¨odinger (NLS) equation. For this purpose, firstly Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using special type of classical finite difference method namely, Crank-Nicolson scheme. After that, Rubin and Graves linearization techniques have been utilized and differential quadrature method has been applied. So, partial differential equation turn into algebraic equation system. Next, in order to be able to test the accuracy of the newly hybrid method, the error norms L2 and L? as well as the two lowest invariants I1 and I2 have been calculated. Besides those, the relative changes in those invariants have been given. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison has clearly indicated that the currently utilized method, namely FDM-DQM, is an effective and efficient numerical schemeand allowed us to propose to solve a wide range of nonlinear equations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nail Akhmediev

The nonlinear Schrödinger equation has wide range of applications in physics with spatial scales that vary from microns to kilometres. Consequently, its solutions are also universal and can be applied to water waves, optics, plasma and Bose-Einstein condensate. The most remarkable solution presently known as the Peregrine solution describes waves that appear from nowhere. This solution describes unique events localized both in time and in space. Following the language of mariners they are called “rogue waves”. As thorough mathematical analysis shows, these waves have properties that differ them from any other nonlinear waves known before. Peregrine waves can serve as ‘elementary particles’ in more complex structures that are also exact solutions of the nonlinear Schrödinger equation. These structures lead to specific patterns with various degrees of symmetry. Some of them resemble “atomic like structures”. The number of particles in these structures is not arbitrary but satisfies strict rules. Similar structures may be observed in systems described by other equations of mathematical physics: Hirota equation, Davey-Stewartson equations, Sasa-Satsuma equation, generalized Landau-Lifshitz equation, complex KdV equation and even the coupled Higgs field equations describing nucleons interacting with neutral scalar mesons. This means that the ideas of rogue waves enter nearly all areas of physics including the field of elementary particles.


1992 ◽  
Vol 70 (12) ◽  
pp. 1261-1266 ◽  
Author(s):  
M. R. M. Witwit ◽  
J. P. Killingbeck

The energy levels of a one-dimensional system are calculated for the rational potentials, [Formula: see text] and [Formula: see text], with (2L = 4, 6). We use the hypervirial method and Padé approximants over a wide range of values of the perturbation parameters (α, g, λ) and for various states. The numerical results agree with those of previous workers where they are available.


Sign in / Sign up

Export Citation Format

Share Document