scholarly journals Algebraic integrability of foliations with numerically trivial canonical bundle

2019 ◽  
Vol 216 (2) ◽  
pp. 395-419 ◽  
Author(s):  
Andreas Höring ◽  
Thomas Peternell
2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


1982 ◽  
Vol 67 (2) ◽  
pp. 297-331 ◽  
Author(s):  
M. Adler ◽  
P. van Moerbeke

2006 ◽  
Vol 231 (2) ◽  
pp. 611-632 ◽  
Author(s):  
C. Galindo ◽  
F. Monserrat

Author(s):  
Zsolt Patakfalvi ◽  
Maciej Zdanowicz

AbstractWe prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic $$p>0$$ p > 0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with Langer’s results, implies that varieties of the above type have strongly semistable tangent bundles with respect to every polarization.


2006 ◽  
Vol 17 (01) ◽  
pp. 35-43 ◽  
Author(s):  
MARCO BRUNELLA

We prove that the canonical bundle of a foliation by curves on a compact Kähler manifold is pseudoeffective, unless the foliation is a (special) foliation by rational curves.


2007 ◽  
Vol 57 (1) ◽  
pp. 289-300 ◽  
Author(s):  
Benoît Claudon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document