scholarly journals Invariance for multiples of the twisted canonical bundle

2007 ◽  
Vol 57 (1) ◽  
pp. 289-300 ◽  
Author(s):  
Benoît Claudon
Keyword(s):  
2021 ◽  
Vol 9 ◽  
Author(s):  
Patrick Graf ◽  
Martin Schwald

Abstract Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group ${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


Author(s):  
Zsolt Patakfalvi ◽  
Maciej Zdanowicz

AbstractWe prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic $$p>0$$ p > 0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with Langer’s results, implies that varieties of the above type have strongly semistable tangent bundles with respect to every polarization.


2006 ◽  
Vol 17 (01) ◽  
pp. 35-43 ◽  
Author(s):  
MARCO BRUNELLA

We prove that the canonical bundle of a foliation by curves on a compact Kähler manifold is pseudoeffective, unless the foliation is a (special) foliation by rational curves.


2019 ◽  
Vol 293 (3-4) ◽  
pp. 1071-1084
Author(s):  
Daniele Agostini ◽  
Alex Küronya ◽  
Victor Lozovanu
Keyword(s):  

2019 ◽  
Vol 216 (2) ◽  
pp. 395-419 ◽  
Author(s):  
Andreas Höring ◽  
Thomas Peternell

1995 ◽  
Vol 118 (1) ◽  
pp. 183-188
Author(s):  
Qi Zhang

Let X be a smooth projective variety of dimension n over the field of complex numbers. We denote by Kx the canonical bundle of X. By Mori's theory, if Kx is not numerically effective (i.e. if there exists a curve on X which has negative intersection number with Kx), then there exists an extremal ray ℝ+[C] on X and an elementary contraction fR: X → Y associated with ℝ+[C].fR is called a small contraction if it is bi-rational and an isomorphism in co-dimension one.


2018 ◽  
Vol 2019 (21) ◽  
pp. 6765-6796 ◽  
Author(s):  
Jakob Hultgren ◽  
D Witt Nyström

Abstract We propose new types of canonical metrics on Kähler manifolds, called coupled Kähler–Einstein metrics, generalizing Kähler–Einstein metrics. We prove existence and uniqueness results in the cases when the canonical bundle is ample and when the manifold is Kähler–Einstein Fano. In the Fano case, we also prove that existence of coupled Kähler–Einstein metrics imply a certain algebraic stability condition, generalizing K-polystability.


Sign in / Sign up

Export Citation Format

Share Document