scholarly journals On the Complexity of the Smallest Grammar Problem over Fixed Alphabets

Author(s):  
Katrin Casel ◽  
Henning Fernau ◽  
Serge Gaspers ◽  
Benjamin Gras ◽  
Markus L. Schmid

AbstractIn the smallest grammar problem, we are given a word w and we want to compute a preferably small context-free grammar G for the singleton language {w} (where the size of a grammar is the sum of the sizes of its rules, and the size of a rule is measured by the length of its right side). It is known that, for unbounded alphabets, the decision variant of this problem is NP-hard and the optimisation variant does not allow a polynomial-time approximation scheme, unless P = NP. We settle the long-standing open problem whether these hardness results also hold for the more realistic case of a constant-size alphabet. More precisely, it is shown that the smallest grammar problem remains NP-complete (and its optimisation version is APX-hard), even if the alphabet is fixed and has size of at least 17. The corresponding reduction is robust in the sense that it also works for an alternative size-measure of grammars that is commonly used in the literature (i. e., a size measure also taking the number of rules into account), and it also allows to conclude that even computing the number of rules required by a smallest grammar is a hard problem. On the other hand, if the number of nonterminals (or, equivalently, the number of rules) is bounded by a constant, then the smallest grammar problem can be solved in polynomial time, which is shown by encoding it as a problem on graphs with interval structure. However, treating the number of rules as a parameter (in terms of parameterised complexity) yields W[1]-hardness. Furthermore, we present an $\mathcal {O}(3^{\mid {w}\mid })$ O ( 3 ∣ w ∣ ) exact exponential-time algorithm, based on dynamic programming. These three main questions are also investigated for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the right side; thus, investigating the impact of the “hierarchical depth” of grammars on the complexity of the smallest grammar problem. In this regard, we obtain for 1-level grammars similar, but slightly stronger results.

2005 ◽  
Vol 16 (04) ◽  
pp. 803-827 ◽  
Author(s):  
TAKEHIRO ITO ◽  
XIAO ZHOU ◽  
TAKAO NISHIZEKI

Assume that a tree T has a number ns of "supply vertices" and all the other vertices are "demand vertices." Each supply vertex is assigned a positive number called a supply, while each demand vertex is assigned a positive number called a demand. One wishes to partition T into exactly ns subtrees by deleting edges from T so that each subtree contains exactly one supply vertex whose supply is no less than the sum of demands of all demand vertices in the subtree. The "partition problem" is a decision problem to ask whether T has such a partition. The "maximum partition problem" is an optimization version of the partition problem. In this paper, we give three algorithms for the problems. The first is a linear-time algorithm for the partition problem. The second is a pseudo-polynomial-time algorithm for the maximum partition problem. The third is a fully polynomial-time approximation scheme (FPTAS) for the maximum partition problem.


2013 ◽  
Vol 39 (1) ◽  
pp. 57-85 ◽  
Author(s):  
Alexander Fraser ◽  
Helmut Schmid ◽  
Richárd Farkas ◽  
Renjing Wang ◽  
Hinrich Schütze

We study constituent parsing of German, a morphologically rich and less-configurational language. We use a probabilistic context-free grammar treebank grammar that has been adapted to the morphologically rich properties of German by markovization and special features added to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding with lessons learned, which apply to parsing other morphologically rich and less-configurational languages.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shuen Guo ◽  
Zhichao Geng ◽  
Jinjiang Yuan

<p style='text-indent:20px;'>In this paper, we study the single-machine Pareto-scheduling of jobs with multiple weighting vectors for minimizing the total weighted late works. Each weighting vector has its corresponding weighted late work. The goal of the problem is to find the Pareto-frontier for the weighted late works of the multiple weighting vectors. When the number of weighting vectors is arbitrary, it is implied in the literature that the problem is unary NP-hard. Then we concentrate on our research under the assumption that the number of weighting vectors is a constant. For this problem, we present a dynamic programming algorithm running in pseudo-polynomial time and a fully polynomial-time approximation scheme (FPTAS).</p>


Sign in / Sign up

Export Citation Format

Share Document