Matching and mismatching stable isotope (δ13C and δ15N) ratios in fin and muscle tissue among fish species: a critical review

2013 ◽  
Vol 160 (7) ◽  
pp. 1633-1644 ◽  
Author(s):  
Trevor J. Willis ◽  
Christopher J. Sweeting ◽  
Sarah J. Bury ◽  
Sean J. Handley ◽  
Julie C. S. Brown ◽  
...  
2014 ◽  
Author(s):  
Christopher D. Stallings ◽  
James A. Neslon ◽  
Katherine L. Rozar ◽  
Charles S. Adams ◽  
Kara R. Wall ◽  
...  

Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.


Author(s):  
Kristin Scharnweber ◽  
Matilda Andersson ◽  
Fernando Chaguaceda ◽  
Peter Eklöv

1. Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically be used to obtain information on the trophic ecology and food web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g. liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. 2. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissue for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring their oxygen consumption of the individuals. 3. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. 4. In summary, our results emphasize the role of metabolism in shaping specific TDF (i.e. Δ13C and Δ15N of muscle tissue), and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food web studies.


2012 ◽  
Vol 434-435 ◽  
pp. 7-15 ◽  
Author(s):  
Nigel E. Hussey ◽  
Jill A. Olin ◽  
Michael J. Kinney ◽  
Bailey C. McMeans ◽  
Aaron T. Fisk

Author(s):  
Kristin Scharnweber ◽  
Matilda Andersson ◽  
Fernando Chaguaceda ◽  
Peter Eklöv

1. Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically be used to obtain information on the trophic ecology and food web interactions. The trophic discrimination factor (TDF, Δ13C and Δ15N) describes the isotopic fractionation occurring from diet to consumer tissue and this value is critical to obtain precise estimates within any application of δ13C and δ15N. It is widely acknowledged that metabolism influences the TDF, being responsible for different TDFs between tissues of variable metabolic activity (e.g. liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDFs has rarely been considered. 2. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissue for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDFs for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDFs by measuring their oxygen consumption of the individuals. 3. Our results showed a significant negative relationship of SMR with Δ13C, but not with Δ15N of muscle or TDFs of liver tissue. SMR was significantly higher in perch juveniles, which translated to significantly lower Δ13C of muscle tissue. 4. In summary, our results emphasize the role of metabolism in shaping specific TDFs (i.e. Δ13C of muscle tissue), and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food web studies.


2014 ◽  
Author(s):  
Christopher D. Stallings ◽  
James A. Neslon ◽  
Katherine L. Rozar ◽  
Charles S. Adams ◽  
Kara R. Wall ◽  
...  

Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.


2016 ◽  
Author(s):  
Caitlin T. McManimon ◽  
◽  
David P. Gillikin ◽  
William B. Ouimet ◽  
Michael T. Hren ◽  
...  

2012 ◽  
Vol 9 (2) ◽  
pp. 130 ◽  
Author(s):  
Vivien F. Taylor ◽  
Brian P. Jackson ◽  
Matthew R. Siegfried ◽  
Jana Navratilova ◽  
Kevin A. Francesconi ◽  
...  

Environmental contextArsenic occurs in marine organisms at high levels and in many chemical forms. A common explanation of this phenomenon is that algae play the central role in accumulating arsenic by producing arsenic-containing sugars that are then converted into simpler organic arsenic compounds found in fish and other marine animals. We show that animals in deep-sea vent ecosystems, which are uninhabited by algae, contain the same organic arsenic compounds as do pelagic animals, indicating that algae are not the only source of these compounds. AbstractArsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.


Sign in / Sign up

Export Citation Format

Share Document