eurasian perch
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 30)

H-INDEX

37
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260938
Author(s):  
Matilda L. Andersson ◽  
Kaj Hulthén ◽  
Charlie Blake ◽  
Christer Brönmark ◽  
P. Anders Nilsson

The propensity to kill and consume conspecifics (cannibalism) varies greatly between and within species, but the underlying mechanisms behind this variation remain poorly understood. A rich literature has documented that consistent behavioural variation is ubiquitous across the animal kingdom. Such inter-individual behavioural differences, sometimes referred to as personality traits, may have far-reaching ecological consequences. However, the link between predator personality traits and the propensity to engage in cannibalistic interactions remains understudied. Here, we first quantified personality in Eurasian perch (Perca fluviatilis), measured as activity (time spent moving) and sociability (time spent near conspecifics). We then gave perch of contrasting behavioural types the option to consume either conspecific or heterospecific (roach, Rutilus rutilus) prey. Individual perch characterized by a social-active behavioural phenotype (n = 5) selected roach before being cannibalistic, while asocial-inactive perch (n = 17) consumed conspecific and heterospecific prey evenly. Thus, asocial-inactive perch expressed significantly higher rates of cannibalism as compared to social-active individuals. Individual variation in cannibalism, linked to behavioural type, adds important mechanistic understanding to complex population and community dynamics, and also provides insight into the diversity and maintenance of animal personality.


Author(s):  
Mikhail Ozerov ◽  
Kristina Noreikiene ◽  
Siim Kahar ◽  
Magnus Huss ◽  
Ari Huusko ◽  
...  

Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in extremely acidic humic lakes. Such lakes represent almost “nocturnal” environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 SNPs, of which >10,000 were identified as potential candidates under selection (associated with >3,000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment involves hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate multifaceted nature of humic adaptation and highlights the next challenge moving from high-throughput outlier identification towards functional validation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2735
Author(s):  
Mahyar Zare ◽  
Hung Quang Tran ◽  
Marketa Prokešová ◽  
Vlastimil Stejskal

The supplementation of fish diets with phytogenics can increase growth performance and can modulate immune system response. European perch Perca fluviatilis (initial weight 25.0 ± 0.4 g) were fed a diet including 0 (Control), 10 (G10), 20 (G20), and 30 (G30) g kg−1 garlic powder. No significant difference in the growth parameters and somatic indices were observed. Significantly higher fat digestibility was observed in G10 and G30 diets compared to in the control and G20 diets(p < 0.05). Significantly greater red blood cell and white blood cell counts were observed with the G10 diet (p < 0.05). Garlic significantly decreased serum cholesterol in all of the experimental groups. Serum albumin was significantly higher in the G10 and G20 diets (p < 0.05). Immediately after the overcrowding stress challenge, the garlic groups showed significantly higher cortisol levels than the control group, while no significant difference was observed in the glucose concentration among groups. At 1 h post-stress, all of the groups that had been fed a garlic-supplemented diet showed lower cortisol levels than the control group, and this trend was maintained at 6 and 24 h post stress (p < 0.05), and glucose level in all garlic groups was significantly lower than control (p < 0.05). Garlic at 10 g kg−1 in feed can improve apparent fat digestibility and selected blood parameters and can enhance resistance against high-density and net handling stress in Eurasian perch.


animal ◽  
2021 ◽  
Vol 15 (9) ◽  
pp. 100340
Author(s):  
D. Żarski ◽  
J. Król ◽  
Y. Ledoré ◽  
B. Sarosiek ◽  
K. Dryl ◽  
...  

2021 ◽  
Author(s):  
Yannick Ledoré ◽  
Anastasia Bestin ◽  
Pierrick Haffray ◽  
Romain Morvezen ◽  
Maud Alix ◽  
...  

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Natalija Suhareva ◽  
Juris Aigars ◽  
Rita Poikāne ◽  
Juris Tunens

Abstract Background Eurasian perch (Perca fluviatilis) is an ecologically significant fish species in the Baltic Sea and has been recognized as a suitable organism to measure concentrations of mercury (Hg) contamination. The adult species occupy a high trophic position; therefore, significant levels of the hazardous substances tend to bioaccumulate in their tissues. However, the ability of the species to inhabit a wide range of feeding ground raises concerns about the adequacy of monitoring data in relation to the representativeness of measured levels of Hg at specific locations. Accounting for the migratory characteristics of this species can shed light on the origin of the analyzed specimens and thus trace Hg uptake chain. Perch samples and potential perch prey were collected at three remote stations in a fully interlinked system river–lake–coastal/transitional waters of the Gulf of Riga. Total mercury (THg) concentration and stable isotope ratios were measured in each sampled item. The perch data were divided into three subgroups associated with specific feeding grounds and one mixed group. A Bayesian mixing model was implemented to quantify the feeding preferences of each group, and based on the results, influence of each food source on Hg uptake by perch was modeled by means of Gaussian GAM model. Results Calculated carbon and nitrogen stable isotope values demonstrated clear evidence of perch specimens migrating between the sampling stations. Substantial proportion of specimens sampled in river and lake stations had isotopic signals consistent with feeding in the gulf. The group of perch associated with feeding in the river grounds exhibited the highest THg concentrations with mean value of 209 µg kg−1 wet weight. The food items C. harengus membras and Crustacean showed significant mitigating effects on THg concentration. The rest of the food items showed a secondary influence on the variation of THg concentration. Conclusions The study clearly showed that the high mobility of perch along associated aquatic systems has a noticeable effect on Hg concentrations measured in the fish. Therefore, trophic position and isotopic signatures, along with identification of the food sources, can serve as important supplementary tools for more accurate data interpretation of Hg accumulation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joachim Benedikt Bretzel ◽  
Juergen Geist ◽  
Sarah Maria Gugele ◽  
Jan Baer ◽  
Alexander Brinker

The fish community of Lake Constance, a large, deep, oligotrophic lake has undergone drastic changes in recent years, with the sudden rise to dominance of invasive three-spined stickleback (Gasterosteus aculeatus) in the pelagic zone, a rather atypical habitat for this species in Central Europe. The core objective of this study was to compare the feeding ecology of stickleback and young Eurasian perch (Perca fluviatilis) in this unique situation to identify reasons for this unexpected dominance, a possible food niche and feeding time overlap, and to discuss consequences for the reshaped pelagic fish community. The diel feeding patterns and prey compositions of pelagic sticklebacks and juvenile (0+) perch sampled in October 2018 and March 2019 were studied analyzing stomach contents. The diets of both species mostly comprised zooplankton, with copepods appearing in the greatest numbers. Benthic and airborne insects were consumed occasionally, mostly by sticklebacks. Both species exhibited peaks of feeding activity early in the morning, afternoon and dusk, and in both species, stomachs were fullest at dusk. Stickleback stomachs contained about 20% more prey at night than perch, and mean estimated nocturnal stomach fullness values were almost 50% greater. Night feeding in sticklebacks was confirmed by digestive states, pointing to a possible competitive advantage over perch. Dietary composition varied over a 24-h cycle and the pattern of consumption of different prey varied between the species. Perch consumed more comparatively small cladocerans (Bosmina spp.), while larger Daphnia appeared more often in stickleback stomachs. In both species, seasonal variation in diet mirrored food availability, indicating some degree of opportunism. A Morisita-Horn index value of 0.95 confirmed dietary niche overlap between species, suggesting the large population of sticklebacks may exert a competitive effect on juvenile perch when resources are limited. Both the longer feeding periods and greater intake of nutritive high quality prey like daphnids can contribute to the rapid success of stickleback in dominating the pelagic zone of Lake Constance.


Sign in / Sign up

Export Citation Format

Share Document