Numerical CFD analysis and experimental investigation of the geometric performance parameter influences on the counter-flow Ranque-Hilsch vortex tube (C-RHVT) by using optimized turbulence model

2019 ◽  
Vol 55 (9) ◽  
pp. 2559-2591 ◽  
Author(s):  
Adib Bazgir ◽  
Mohammadreza Khosravi-Nikou ◽  
Ali Heydari
Energy ◽  
2017 ◽  
Vol 133 ◽  
pp. 284-298 ◽  
Author(s):  
Hitesh R. Thakare ◽  
Ashok D. Parekh

2019 ◽  
pp. 418-418
Author(s):  
Lizan Zangana ◽  
Ramzi Barwari

In this manuscript, both experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model was manufactured with (total length of 104 mm and the inner diameter of 8 mm, and made of cast iron) tested under different inlet pressures (4, 5 and 6 bar). The thermal performance has been studied for hot and cold outlet temperature as a function of mass fraction ? (0.3- 0.8). Three-dimensional numerical modeling using the k-? model used with code (Fluent 6.3.26). Two types of velocity components are studied (axial and swirl). The results show any increase in both cold mass fraction and inlet pressure caused to increase ?Tc, and the maximum ?Tc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube which are a heat pump and a refrigerator have been evaluated, which ranged from 0.25 to 0.74. A different axial location (Z/L = 0.2, 0.5, and 0.8) was modeled to evaluate swirl velocity and radial profiles, where the swirl velocity has the highest value. The maximum axial velocity is 93, where it occurs at the tube axis close to the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.


2016 ◽  
Vol 819 ◽  
pp. 356-360
Author(s):  
Mazharul Islam ◽  
Jiří Fürst ◽  
David Wood ◽  
Farid Nasir Ani

In order to evaluate the performance of airfoils with computational fluid dynamics (CFD) tools, modelling of transitional region in the boundary layer is very critical. Currently, there are several classes of transition-based turbulence model which are based on different methods. Among these, the k-kL- ω, which is a three equation turbulence model, is one of the prominent ones which is based on the concept of laminar kinetic energy. This model is phenomenological and has several advantageous features. Over the years, different researchers have attempted to modify the original version which was proposed by Walter and Cokljat in 2008 to enrich the modelling capability. In this article, a modified form of k-kL-ω transitional turbulence model has been used with the help of OpenFOAM for an investigative CFD analysis of a NACA 4-digit airfoil at range of angles of attack.


Author(s):  
Hitesh Thakare ◽  
Ashok Parekh ◽  
Arif Upletawala ◽  
Bhushan Behede

Sign in / Sign up

Export Citation Format

Share Document