Distribution Pattern of Organophosphate Esters in Particle-Size Fractions of Urban Topsoils Under Different Land-Use Types and Its Relationship to Organic Carbon Content

2020 ◽  
Vol 79 (2) ◽  
pp. 208-218
Author(s):  
Qing Luo ◽  
Zhongping Wu ◽  
Leiyan Gu
2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Olorunwa Eric Omofunmi ◽  
Best Ayoyimika Omotayo

The present study attempts to relate the soil organic carbon content with four different land uses (Faculty of Agriculture Teaching and Research farm, cashew plantation and Agricultural and Bioresources experimental farm and oil palm plantation) which come under South west, Nigeria. The objective of the study was to assess the effects of different land uses on soil organic carbon. The sampled soils were collected from different land uses at 0–15 cm (surface), 15 – 30 cm and 30 - 45 cm (sub-surface) depth and were analyzed for soil physical properties with standard procedures. Data were analysed using descriptive statistics and analysis of variance (ANOVA). The results indicated that the oil palm plantation land use recorded the highest mean of soil organic carbon content compared with other land use types at 0 – 15 cm soil depth (23 ±4 g kg-1), which was 1.5, 2.6 and 53.3 % more than in the Faculty of Agriculture Teaching and Research farm land, the cashew plantation land and the Agricultural and Bioresources experimental farm land. This is attributed to more inputs of litter fall and reduced decomposition of organic matter. Similarly, the lowest soil organic carbon content under Agricultural and Bioresorces engineering as compared to others was attributed to reduce of organic matter and frequent tillage which encouraged oxidation of organic matter. The finding indicated that the means of soil organic carbon were significantly different (P < 0.05) between the land use types. Conservation farming should be practiced


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2015 ◽  
Vol 72 (7) ◽  
pp. 1234-1242 ◽  
Author(s):  
K. Wada ◽  
N. Takei ◽  
T. Sato ◽  
H. Tsuno

This study aims to explore the influential sources of organic matter in first flush runoff from urban roadways by comparing organic carbon content and particle size distribution in road dust with those from discharge from vehicles during rainfall. Samples on first flush runoff and road dust were collected from urban roadways. In addition, vehicle drainage was assumed to flow from vehicles during rainfall events, so vehicle wash-off water was collected by spraying water onto the top and from the underside of vehicles to simulate accumulation during a vehicle run. In road dust, the organic carbon content in the &lt;0.2 mm fraction was about twice that of the 0.2–2 mm fraction. The particle size distributions of both first flush runoff and vehicle wash-off water were similar, and particles &lt;0.2 mm contributed to over 95% of the total volume. The dissolved organic carbon concentration in the vehicle wash-off water was considerably higher than that in the road dust/water mixture. The total organic carbon content in road dust was positively correlated with annual daily traffic. Therefore, vehicles were thought to strongly influence the nature of road dust.


Sign in / Sign up

Export Citation Format

Share Document