Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

2015 ◽  
Vol 74 (1) ◽  
pp. 129-161 ◽  
Author(s):  
F. Dufour ◽  
A. B. Piunovskiy
Author(s):  
Huizhen Yu

We consider the linear programming approach for constrained and unconstrained Markov decision processes (MDPs) under the long-run average-cost criterion, where the class of MDPs in our study have Borel state spaces and discrete countable action spaces. Under a strict unboundedness condition on the one-stage costs and a recently introduced majorization condition on the state transition stochastic kernel, we study infinite-dimensional linear programs for the average-cost MDPs and prove the absence of a duality gap and other optimality results. Our results do not require a lower-semicontinuous MDP model. Thus, they can be applied to countable action space MDPs where the dynamics and one-stage costs are discontinuous in the state variable. Our proofs make use of the continuity property of Borel measurable functions asserted by Lusin’s theorem.


2002 ◽  
Vol 43 (4) ◽  
pp. 541-557 ◽  
Author(s):  
Xianping Guo ◽  
Weiping Zhu

AbstractIn this paper, we consider denumerable state continuous time Markov decision processes with (possibly unbounded) transition and cost rates under average criterion. We present a set of conditions and prove the existence of both average cost optimal stationary policies and a solution of the average optimality equation under the conditions. The results in this paper are applied to an admission control queue model and controlled birth and death processes.


Sign in / Sign up

Export Citation Format

Share Document