Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children

2014 ◽  
Vol 45 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Haesung Yoon ◽  
Myung-Joon Kim ◽  
Choon-Sik Yoon ◽  
Jiin Choi ◽  
Hyun Joo Shin ◽  
...  
Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


2012 ◽  
Vol 43 (5) ◽  
pp. 558-567 ◽  
Author(s):  
Frédéric A. Miéville ◽  
Laureline Berteloot ◽  
Albane Grandjean ◽  
Paul Ayestaran ◽  
François Gudinchet ◽  
...  

2021 ◽  
Author(s):  
Haesung Yoon ◽  
Jisoo Kim ◽  
Hyun Ji Lim ◽  
Mi-Jung Lee

Abstract Background Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images.Methods This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1–18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). Quantitative and qualitative parameters were compared using repeated measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests.Results DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8% and 53.1% respectively. The subjective assessment of overall image quality and noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods.Conclusion Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.


2013 ◽  
Vol 201 (2) ◽  
pp. W235-W244 ◽  
Author(s):  
Mannudeep K. Kalra ◽  
Mischa Woisetschläger ◽  
Nils Dahlström ◽  
Sarabjeet Singh ◽  
Subbarao Digumarthy ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haesung Yoon ◽  
Jisoo Kim ◽  
Hyun Ji Lim ◽  
Mi-Jung Lee

Abstract Background Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT image reconstruction to overcome the drawbacks of iterative reconstruction (IR). The purpose of our study was to compare the objective and subjective image quality of DLR and IR on pediatric abdomen and chest CT images. Methods This retrospective study included pediatric body CT images from February 2020 to October 2020, performed on 51 patients (34 boys and 17 girls; age 1–18 years). Non-contrast chest CT (n = 16), contrast-enhanced chest CT (n = 12), and contrast-enhanced abdomen CT (n = 23) images were included. Standard 50% adaptive statistical iterative reconstruction V (ASIR-V) images were compared to images with 100% ASIR-V and DLR at medium and high strengths. Attenuation, noise, contrast to noise ratio (CNR), and signal to noise (SNR) measurements were performed. Overall image quality, artifacts, and noise were subjectively assessed by two radiologists using a four-point scale (superior, average, suboptimal, and unacceptable). A phantom scan was performed including the dose range of the clinical images used in our study, and the noise power spectrum (NPS) was calculated. Quantitative and qualitative parameters were compared using repeated-measures analysis of variance (ANOVA) with Bonferroni correction and Wilcoxon signed-rank tests. Results DLR had better CNR and SNR than 50% ASIR-V in both pediatric chest and abdomen CT images. When compared with 50% ASIR-V, high strength DLR was associated with noise reduction in non-contrast chest CT (33.0%), contrast-enhanced chest CT (39.6%), and contrast-enhanced abdomen CT (38.7%) with increases in CNR at 149.1%, 105.8%, and 53.1% respectively. The subjective assessment of overall image quality and the noise was also better on DLR images (p < 0.001). However, there was no significant difference in artifacts between reconstruction methods. From NPS analysis, DLR methods showed a pattern of reducing the magnitude of noise while maintaining the texture. Conclusion Compared with 50% ASIR-V, DLR improved pediatric body CT images with significant noise reduction. However, artifacts were not improved by DLR, regardless of strength.


Sign in / Sign up

Export Citation Format

Share Document