scholarly journals Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc

2014 ◽  
Vol 66 (11) ◽  
pp. 671-674 ◽  
Author(s):  
Stevan A. Springer ◽  
Sandra L. Diaz ◽  
Pascal Gagneux
2007 ◽  
Vol 18 (4) ◽  
pp. 1366-1374 ◽  
Author(s):  
Fakhraddin Naghibalhossaini ◽  
Anne D. Yoder ◽  
Martin Tobi ◽  
Clifford P. Stanners

GPI membrane anchors of cell surface glycoproteins have been shown to confer functional properties that are different from their transmembrane (TM)-anchored counterparts. For the human carcinoembryonic antigen (CEA) family, a subfamily of the immunoglobulin superfamily, conversion of the mode of membrane linkage from TM to GPI confers radical changes in function: from tumor suppression or neutrality toward inhibition of differentiation and anoikis and distortion of tissue architecture, thereby contributing to tumorigenesis. We show here that GPI anchorage in the CEA family evolved twice independently in primates, very likely from more primitive TM anchors, by different packages of mutations. Both mutational packages, one package found in many primates, including humans, and a second, novel package found only in the Cebidae radiation of New World monkeys, give rise to efficiently processed GPI-linked proteins. Both types of GPI anchors mediate inhibition of cell differentiation. The estimated rate of nonsynonymous mutations (Ka) in the anchor-determining domain for conversion from TM to GPI anchorage in the CEA family that were fixed during evolution in these primates is 7 times higher than the average Ka in primates, indicating positive selection. These results suggest therefore that the functional changes mediated by CEA GPI anchors, including the inhibition of differentiation and anoikis, could be adaptive and advantageous.


1999 ◽  
Vol 80 (10) ◽  
pp. 2613-2619 ◽  
Author(s):  
Heui-Soo Kim ◽  
Osamu Takenaka ◽  
Timothy J. Crow

An investigation was undertaken of primate pol gene sequences from a novel endogenous retrovirus family, ERV-W, related to a new human endogenous retrovirus family (HERV-W) that includes multiple sclerosis-associated retrovirus (MSRV) sequences identified in particles recovered from monocyte cultures from patients with multiple sclerosis. The pol gene sequences of the ERV-W family were detected in hominoids and Old World monkeys, but not in New World monkeys, whereas ERV-W long terminal repeat-like elements were detected in all primates (hominoids, Old World monkeys and New World monkeys). Thirty-two pol gene sequences from hominoids and Old World monkeys showed a high degree of sequence identity to MSRV and other HERV-W sequences. Phylogenetic analysis indicated close relationships of pol gene sequences across primate species. The analysis suggests that the ERV-W family has evolved independently but in constrained patterns (‘parallel evolution’) in different primate species, including man. The ratio of synonymous to non- synonymous substitutions indicated that negative selective pressure is acting on CHW1-1 from chimpanzee, HBW6-6 from baboon and HWX5 from man, sequences that have no disruption by point mutation or insertions/deletions. Therefore, these pol gene sequences could be associated with an active provirus in primates. The findings indicate that the ERV-W family has continued to evolve in the course of the primate radiation and may include members with a capacity to influence gene function and possibly cause disease.


1996 ◽  
Vol 271 (47) ◽  
pp. 30298
Author(s):  
Robert M. Johnson ◽  
Steven Buck ◽  
Chi-hua Chiu ◽  
Horacio Schneider ◽  
Iracilda Sampaio ◽  
...  
Keyword(s):  

Author(s):  
Walter Carl Hartwig ◽  
Alfred L Rosenberger
Keyword(s):  

1969 ◽  
Vol 100 (3) ◽  
pp. 364-375 ◽  
Author(s):  
B. Ehinger ◽  
B. Falck

2007 ◽  
Vol 28 (4) ◽  
pp. 729-759 ◽  
Author(s):  
Gerald H. Jacobs
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document