Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae

2003 ◽  
Vol 63 (1) ◽  
pp. 57-63 ◽  
Author(s):  
H.-Y. Seo ◽  
Y.-J. Chung ◽  
S.-J. Kim ◽  
C.-U. Park ◽  
K.-S. Kim
2021 ◽  
Vol 44 (1) ◽  
pp. 117-127
Author(s):  
Mohamed Boumaiza ◽  
Imene Fhoula ◽  
Fernando Carmona ◽  
Maura Poli ◽  
Michela Asperti ◽  
...  

Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin–ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.


Gene ◽  
1987 ◽  
Vol 51 (2-3) ◽  
pp. 269-274 ◽  
Author(s):  
Sonia Levi ◽  
Gianni Cesareni ◽  
Paolo Arosio ◽  
Rolando Lorenzetti ◽  
Marco Soria ◽  
...  

Biochimie ◽  
1996 ◽  
Vol 78 (2) ◽  
pp. 144-152 ◽  
Author(s):  
M. Góra ◽  
A. Chaciñska ◽  
J. Rytka ◽  
R. Labbe-Bois

1995 ◽  
Vol 231 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Anita Holler ◽  
Vladimir I. Bashkirov ◽  
Jachen A. Solinger ◽  
Ursula Reinhart ◽  
Wolf-Dietrich Heyer

2007 ◽  
Vol 6 (12) ◽  
pp. 2448-2452 ◽  
Author(s):  
Libera Lo Presti ◽  
Moira Cockell ◽  
Lorenzo Cerutti ◽  
Viesturs Simanis ◽  
Philippe M. Hauser

ABSTRACT Pneumocystis jirovecii is a fungus which causes severe opportunistic infections in immunocompromised humans. The brl1 gene of P. carinii infecting rats was identified and characterized by using bioinformatics in conjunction with functional complementation in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The ectopic expression of this gene rescues null alleles of essential nuclear membrane proteins of the Brr6/Brl1 family in both yeasts.


Sign in / Sign up

Export Citation Format

Share Document