null alleles
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 99)

H-INDEX

64
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Snigdha Chatterjee ◽  
Min Xu ◽  
Elena M. Shemyakina ◽  
Jacob O Brunkard

Pontin and Reptin are essential eukaryotic AAA+ ATPases that work together in several multiprotein complexes, contributing to chromatin remodeling and TARGET OF RAPAMCYIN (TOR) kinase complex assembly, among other functions. Null alleles of pontin or reptin are gametophyte lethal in plants, which has hindered studies of their crucial roles in plant biology. Here, we used virus-induced gene silencing (VIGS) to interrogate the functions of Pontin and Reptin in plant growth and physiology, focusing on Nicotiana benthamiana, a model species for the agriculturally significant Solanaceae family. Silencing either Pontin or Reptin caused pleiotropic developmental and physiological reprogramming, including aberrant leaf shape, reduced apical growth, delayed flowering, increased branching, chlorosis, and decreased spread of the RNA viruses Tobacco mosaic virus (TMV) and Potato virus X (PVX). To dissect these pleiotropic phenotypes, we took a comparative approach and silenced expression of key genes that encode subunits of each of the major Pontin/Reptin-associated chromatin remodeling or TOR complexes (INO80, SWR-C/PIE1, TIP60, TOR, and TELO2). We found that many of the pontin/reptin phenotypes could be attributed specifically to disruption of one of these complexes, with tip60 and tor knockdown plants each phenocopying a large subset of pontin/reptin phenotypes. We conclude that Pontin/Reptin complexes are crucial for proper plant development, physiology, and stress responses, highlighting the multifaceted roles these conserved enzymes have evolved in eukaryotic cells.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1816
Author(s):  
Bohdan Kousal ◽  
Lucia Hlavata ◽  
Hana Vlaskova ◽  
Lenka Dvorakova ◽  
Michaela Brichova ◽  
...  

The aim of this study was to identify RS1 pathogenic variants in Czech patients with X-linked retinoschisis (XLRS) and to describe the associated phenotypes, including natural history, in some cases. Twenty-one affected males from 17 families were included. The coding region of RS1 was directly sequenced and segregation of the identified mutations was performed in available family members. In total, 12 disease-causing variants within RS1 were identified; of these c.20del, c.275G>A, c.[375_379del; 386A>T], c.539C>A and c.575_576insT were novel, all predicted to be null alleles. The c.539C>A mutation occurred de novo. Three patients (aged 8, 11 and 19 years) were misdiagnosed as having intermediate uveitis and treated with systemic steroids. Repeat spectral domain optical coherence tomography examinations in four eyes documented the transition from cystoid macular lesions to macular atrophy in the fourth decade of life. Four individuals were treated with topical dorzolamide and in two of them, complete resolution of the cystic macular lesions bilaterally was achieved, while one patient was noncompliant. Rebound phenomenon after discontinuation of dorzolamide for 7 days was documented in one case. Misdiagnosis of XLRS for uveitis is not uncommon; therefore, identification of disease-causing variants is of considerable benefit to the affected individuals.


2021 ◽  
Author(s):  
Rocio Alarcon Reverte ◽  
Yucong Xie ◽  
John Stromberger ◽  
Jennifer Cotter ◽  
Esten Mason ◽  
...  

Acrylamide is a neurotoxin and probable carcinogen formed as a processing contaminant during baking and production of different foodstuffs, including bread products. The amino acid asparagine is the limiting substrate in the Maillard reaction that produces acrylamide, so developing wheat varieties with low free asparagine concentrations in the grain is a promising approach to reduce dietary acrylamide exposure. A candidate gene approach was used to identify chemically-induced genetic variation in ASPARAGINE SYNTHETASE 2 (ASN2) genes that exhibit a grain-specific expression profile. In field trials, durum and common wheat lines carrying asn-a2 null alleles exhibited reductions in free asparagine concentration in their grains of between 9 and 34% compared to wild-type sister lines. These plants showed no significant differences in spikelet number, grain size and weight, germination or baking quality traits. These non-transgenic variants can be deployed without restriction in elite wheat germplasm to reduce acrylamide-forming potential with no negative impacts on quality or agronomic performance.


2021 ◽  
Author(s):  
Kevin A. Peterson ◽  
Stephen A. Murray

AbstractThe generation of a comprehensive catalog of null alleles covering all protein-coding genes is the goal of the International Mouse Phenotyping Consortium. Over the past 20 years, significant progress has been made towards achieving this goal through the combined efforts of many large-scale programs that built an embryonic stem cell resource to generate knockout mice and more recently employed CRISPR/Cas9-based mutagenesis to delete critical regions predicted to result in frameshift mutations, thus, ablating gene function. The IMPC initiative builds on prior and ongoing work by individual research groups creating gene knockouts in the mouse. Here, we analyze the collective efforts focusing on the combined null allele resource resulting from strains developed by the research community and large-scale production programs. Based upon this pooled analysis, we examine the remaining fraction of protein-coding genes focusing on clearly defined mouse–human orthologs as the highest priority for completing the mutant mouse null resource. In summary, we find that there are less than 3400 mouse–human orthologs remaining in the genome without a targeted null allele that can be further prioritized to achieve our overall goal of the complete functional annotation of the protein-coding portion of a mammalian genome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mid-Eum Park ◽  
Jae-Young Yun ◽  
Hyun Uk Kim

The demand for vegetable oil, which is mainly used for dietary purposes and cooking, is steadily increasing worldwide. It is often desirable to reduce unsaturation levels of fatty acids in order to increase storage stability and reduce trans-fat generation during cooking. Functional disruption of FATTY ACID DESATURASE 2 (FAD2) prevents the conversion of monounsaturated oleic acid to polyunsaturated linoleic acid, thereby enhancing the production of the desirable oleic acid. However, FAD2 null alleles, due to growth defects under stress conditions, are impractical for agronomical purposes. Here, we aimed to attenuate FAD2 activity in planta while avoiding adverse growth effects by introducing amino-acid substitutions using CRISPR base editors. In Arabidopsis, we applied the adenine base editor (ABE) and cytosine base editor (CBE) to induce semi-random base substitutions within several selected FAD2 coding regions. Isolation of base-edited fad2 alleles with higher oleic acid revealed that the CBE application induced C-to-T and/or C-to-G base substitutions within the targeted sequences, resulting in an alteration of the FAD2 enzyme activities; for example, fad2-144 with multiple C-to-G base substitutions showed less growth defects but with a significant increase in oleic acids by 3-fold higher than wild type. Our “proof-of-concept” approach suggests that equivalent alleles may be generated in vegetable oil crops via precision genome editing for practical cultivation. Our targeted semi-random strategy may serve as a new complementary platform for planta engineering of useful agronomic traits.


2021 ◽  
Author(s):  
Hillary Elrick ◽  
Kevin A. Peterson ◽  
Joshua A. Wood ◽  
Denise G. Lanza ◽  
Elif F. Acar ◽  
...  

AbstractThe International Mouse Phenotyping Consortium (IMPC) is generating and phenotyping null mutations for every protein-coding gene in the mouse1,2. The IMPC now uses Cas9, a programmable RNA-guided nuclease that has revolutionized mouse genome editing3 and increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of >3,300 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo null allele engineering with Cas9. Mouse line production has two critical steps – generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. Our analysis identified that whether a gene is essential for viability was the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for generating null alleles in mice using Cas9; these recommendations may be applicable to other allele types and species.


2021 ◽  
Author(s):  
Ramesh Kumar Krishnan ◽  
Naomi Halachmi ◽  
Raju Baskar ◽  
Bakhrat Anna ◽  
Adi Salzberg ◽  
...  

Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different β-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the beta-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the beta-tubulin60D gene, we generated new beta-tubulin60D null alleles (beta-tubulin60D M) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin 1, an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of beta-tubulin60D. We also found a missense mutation in the Pin 1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the β-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that beta-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense beta-tubulin60D mutation in bristle morphogenesis.


Transfusion ◽  
2021 ◽  
Author(s):  
Sunitha Vege ◽  
Aline Floch ◽  
Christine Lomas‐Frances ◽  
Gwen Clarke ◽  
Connie M. Westhoff
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Maya Khasin ◽  
Lois F. Bernhardson ◽  
Patrick M. O’Neill ◽  
Nathan A. Palmer ◽  
Erin D. Scully ◽  
...  

Abstract Background As effects of global climate change intensify, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The secondary cell wall is a vanguard of resistance to these stresses. Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot) cause internal damage to the stalks of the drought tolerant C4 grass, sorghum (Sorghum bicolor (L.) Moench), resulting in reduced transpiration, reduced photosynthesis, and increased lodging, severely reducing yields. Drought can magnify these losses. Two null alleles in monolignol biosynthesis of sorghum (brown midrib 6-ref, bmr6-ref; cinnamyl alcohol dehydrogenase, CAD; and bmr12-ref; caffeic acid O-methyltransferase, COMT) were used to investigate the interaction of water limitation with F. thapsinum or M. phaseolina infection. Results The bmr12 plants inoculated with either of these pathogens had increased levels of salicylic acid (SA) and jasmonic acid (JA) across both watering conditions and significantly reduced lesion sizes under water limitation compared to adequate watering, which suggested that drought may prime induction of pathogen resistance. RNA-Seq analysis revealed coexpressed genes associated with pathogen infection. The defense response included phytohormone signal transduction pathways, primary and secondary cell wall biosynthetic genes, and genes encoding components of the spliceosome and proteasome. Conclusion Alterations in the composition of the secondary cell wall affect immunity by influencing phenolic composition and phytohormone signaling, leading to the action of defense pathways. Some of these pathways appear to be activated or enhanced by drought. Secondary metabolite biosynthesis and modification in SA and JA signal transduction may be involved in priming a stronger defense response in water-limited bmr12 plants.


2021 ◽  
Author(s):  
Dagmara Korona ◽  
Benedict Dirnberger ◽  
Carlo N. G. Giachello ◽  
Rayner M. L. Queiroz ◽  
David-Paul Minde ◽  
...  

Drosophila nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that present a target for insecticides. However, a better understanding of receptor subunit composition is needed for effective design of insecticides. Peptide neurotoxins are known to block nAChRs by binding to its target subunits. To facilitate the analysis of nAChRs we used a CRISPR/Cas9 strategy to generate null alleles for all ten nAChR subunit genes. We studied interactions of nAChR subunits with peptide neurotoxins by larval injections and styrene maleic acid lipid particles (SMALPs) pull-down assays. For the null alleles we determined the effects of α-Bungarotoxin (α-Btx) and ω-Hexatoxin-Hv1a (Hv1a) administration, identifying potential receptor subunits implicated in the binding of these toxins. We employed pull-down assays to confirm α-Btx interactions with the Dα5, Dα6, Dα7 subunits. Finally, we report the localization of fluorescent tagged endogenous Dα6 during nervous system development. Taken together this study elucidates native Drosophila nAChR subunit interactions with insecticidal peptide toxins.


Sign in / Sign up

Export Citation Format

Share Document