scholarly journals Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin–Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios

2021 ◽  
Vol 44 (1) ◽  
pp. 117-127
Author(s):  
Mohamed Boumaiza ◽  
Imene Fhoula ◽  
Fernando Carmona ◽  
Maura Poli ◽  
Michela Asperti ◽  
...  

Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin–ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.

2020 ◽  
Author(s):  
Mohamed Boumaiza ◽  
Samia Rourou ◽  
Paolo Arosio ◽  
Mohamed Nejib Marzouki

Hepcidin a 25-amino-acid and highly disulfide bonded hormone, is the central regulator of iron homeostasis. In this chapter we propose ferritin as a peptide carrier to promote the association of the hybrid hepcidin/ferritin nanoparticle with a particular cell or tissue for therapeutic or diagnostic use. Indeed, human ferritin H-chain fused directly (on its 5’end) with camel mature hepcidin was cloned into the pASK-43 plus vector and expressed using BL21 (DE3) pLys E. coli strain. The transformed E.coli produced efficiently hepcidin-ferritin construct (hepcH), consisting of 213 amino acids with a molecular weight of 24 KDa. The recovered product is a ferritin exposing hepcidin on outer surface. The hepcH monomer was characterized by immunoblotting using a monoclonal antibody specific for human ferritin and a polyclonal antibody specific for hepcidin-25. The results were also confirmed by MALDI-TOF mass spectrometry. The recombinant native human ferritin and the commercial human hepcidin-25 were used as controls in this experiment. The assembly of hepcH, as an heteropolymer molecule, was performed in presence of denatured human ferritin-H and -L chains. After cysteine oxidation of the recombinant nanoparticles, cellular binding assays were performed on mammalian cells such as mouse monocyte–macrophage cell line J774, HepG2 and COS7.


2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Author(s):  
I. B. Trindade ◽  
G. Hernandez ◽  
E. Lebègue ◽  
F. Barrière ◽  
T. Cordeiro ◽  
...  

AbstractIron is a fundamental element for virtually all forms of life. Despite its abundance, its bioavailability is limited, and thus, microbes developed siderophores, small molecules, which are synthesized inside the cell and then released outside for iron scavenging. Once inside the cell, iron removal does not occur spontaneously, instead this process is mediated by siderophore-interacting proteins (SIP) and/or by ferric-siderophore reductases (FSR). In the past two decades, representatives of the SIP subfamily have been structurally and biochemically characterized; however, the same was not achieved for the FSR subfamily. Here, we initiate the structural and functional characterization of FhuF, the first and only FSR ever isolated. FhuF is a globular monomeric protein mainly composed by α-helices sheltering internal cavities in a fold resembling the “palm” domain found in siderophore biosynthetic enzymes. Paramagnetic NMR spectroscopy revealed that the core of the cluster has electronic properties in line with those of previously characterized 2Fe–2S ferredoxins and differences appear to be confined to the coordination of Fe(III) in the reduced protein. In particular, the two cysteines coordinating this iron appear to have substantially different bond strengths. In similarity with the proteins from the SIP subfamily, FhuF binds both the iron-loaded and the apo forms of ferrichrome in the micromolar range and cyclic voltammetry reveals the presence of redox-Bohr effect, which broadens the range of ferric-siderophore substrates that can be thermodynamically accessible for reduction. This study suggests that despite the structural differences between FSR and SIP proteins, mechanistic similarities exist between the two classes of proteins. Graphic abstract


2013 ◽  
Vol 144 (5) ◽  
pp. S-310
Author(s):  
Brendan Chandler ◽  
Belgin Dogan ◽  
Ellen J. Scherl ◽  
Kenneth W. Simpson

Gene ◽  
1987 ◽  
Vol 51 (2-3) ◽  
pp. 269-274 ◽  
Author(s):  
Sonia Levi ◽  
Gianni Cesareni ◽  
Paolo Arosio ◽  
Rolando Lorenzetti ◽  
Marco Soria ◽  
...  

2022 ◽  
Vol 7 (1) ◽  
pp. 474-480
Author(s):  
Yating Mo ◽  
Hou Ip Lao ◽  
Sau Wa Au ◽  
Ieng Chon Li ◽  
Jeremy Hu ◽  
...  

2006 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Si Sun ◽  
Jo Han Gan ◽  
Jennifer J. Paynter ◽  
Stephen J. Tucker

Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide variety of different prokaryotes and a simple unicellular eukaryote. The functional properties of these KirBacs were then examined by growth complementation in a K+ uptake-deficient strain of Escherichia coli (TK2420). Whereas some KirBac genes exhibited robust growth complementation, others either did not complement or showed temperature-dependent complementation including KirBac1.1 and KirBac3.1. In some cases, KirBac expression was also toxic to the growth of E. coli. The KirBac family exhibited a range of sensitivity to the K+ channel blockers Ba2+ and Cs+ as well as differences in their ability to grow on very low-K+ media, thus demonstrating major differences in their permeation properties. These results reveal the existence of a functionally diverse superfamily of microbial KirBac genes and present an excellent resource for the structural and functional analysis of this class of K+ channels. Furthermore, the complementation assay used in this study provides a simple and robust method for the functional characterization of a range of prokaryotic K+ channels that are difficult to study by traditional methods.


Sign in / Sign up

Export Citation Format

Share Document