Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123I]5-I-A-85380 in healthy human subjects

2001 ◽  
Vol 29 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Masahiro Fujita ◽  
John P. Seibyl ◽  
Bruce D. Vaupel ◽  
Gilles Tamagnan ◽  
Michele Early ◽  
...  
2006 ◽  
Vol 33 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Kun-Ju Lin ◽  
Chia-Yih Liu ◽  
Shiaw-Pyng Wey ◽  
Ing-Tsung Hsiao ◽  
Jay Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mai Hatano ◽  
Tomoyuki Miyazaki ◽  
Yoshinobu Ishiwata ◽  
Waki Nakajima ◽  
Tetsu Arisawa ◽  
...  

Abstract[11C]K-2, a radiotracer exhibiting high affinity and selectivity for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), is suitable for the quantification of AMPARs in living human brains and potentially useful in the identification of epileptogenic foci in patients. This study aimed to estimate the radiation doses of [11C]K-2 in various organs and calculate the effective dose after injection of [11C]K-2 in healthy human subjects. Twelve healthy male subjects were registered and divided into two groups (370 or 555 MBq of [11C]K-2), followed by 2 h whole-body scans. We estimated the radiation dose of each organ and then calculated the effective dose for each subject. The highest uptake of [11C]K-2 was observed in the liver, while the brain also showed relatively high uptake. The urinary bladder exhibited the highest radiation dose. The kidneys and liver also showed high radiation doses after [11C]K-2 injections. The effective dose of [11C]K-2 ranged from 5.0 to 5.2 μSv/MBq. Our findings suggest that [11C]K-2 is safe in terms of the radiation dose and adverse effects. The injection of 370–555 MBq (10 to 15 mCi) for PET studies using this radiotracer is applicable in healthy human subjects and enables serial PET scans in a single subject.


Author(s):  
Buqing Yi ◽  
Igor Nichiporuk ◽  
Matthias Feuerecker ◽  
Gustav Schelling ◽  
Alexander Chouker

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 618
Author(s):  
Riley Larson ◽  
Courtney Nelson ◽  
Renee Korczak ◽  
Holly Willis ◽  
Jennifer Erickson ◽  
...  

Acacia gum (AG) is a non-viscous soluble fiber that is easily incorporated into beverages and foods. To determine its physiological effects in healthy human subjects, we fed 0, 20, and 40 g of acacia gum in orange juice along with a bagel and cream cheese after a 12 h fast and compared satiety, glycemic response, gastrointestinal tolerance, and food intake among treatments. Subjects (n = 48) reported less hunger and greater fullness at 15 min (p = 0.019 and 0.003, respectively) and 240 min (p = 0.036 and 0.05, respectively) after breakfast with the 40 g fiber treatment. They also reported being more satisfied at 15 min (p = 0.011) and less hungry with the 40 g fiber treatment at 30 min (p = 0.012). Subjects reported more bloating, flatulence, and GI rumbling on the 40 g fiber treatment compared to control, although values for GI tolerance were all low with AG treatment. No significant differences were found in area under the curve (AUC) or change from baseline for blood glucose response, although actual blood glucose with 20 g fiber at 30 min was significantly less than control. Individuals varied greatly in their postprandial glucose response to all treatments. AG improves satiety response and may lower peak glucose response at certain timepoints, and it is well tolerated in healthy human subjects. AG can be added to beverages and foods in doses that can help meet fiber recommendations.


1993 ◽  
Vol 148 (6_pt_1) ◽  
pp. 1571-1575 ◽  
Author(s):  
M. Jeffery Mador ◽  
Ulysses J. Magalang ◽  
Angel Rodis ◽  
Thomas J. Kufel

Sign in / Sign up

Export Citation Format

Share Document