scholarly journals Impaired coronary flow reserve in patients with supra-normal left ventricular ejection fraction at rest

Author(s):  
Ping Wu ◽  
Xiaoli Zhang ◽  
Zhifang Wu ◽  
Huanzhen Chen ◽  
Xiaoshan Guo ◽  
...  

Abstract Purpose Recently, a “U” hazard ratio curve between resting left ventricular ejection fraction (LVEF) and prognosis has been observed in patients referred for routine clinical echocardiograms. The present study sought to explore whether a similar “U” curve existed between resting LVEF and coronary flow reserve (CFR) in patients without severe cardiovascular disease (CVD) and whether impaired CFR played a role in the adverse outcome of patients with supra-normal LVEF (snLVEF, LVEF ≥ 65%). Methods Two hundred ten consecutive patients (mean age 52.3 ± 9.3 years, 104 women) without severe CVD underwent clinically indicated rest/dipyridamole stress electrocardiography (ECG)-gated 13 N-ammonia positron emission tomography/computed tomography (PET/CT). Major adverse cardiac events (MACE) were followed up for 27.3 ± 9.5 months, including heart failure, late revascularization, re-hospitalization, and re-coronary angiography for any cardiac reason. Clinical characteristics, corrected CFR (cCFR), and MACE were compared among the three groups categorized by resting LVEF detected by PET/CT. Dose–response analyses using restricted cubic spline (RCS) functions, multivariate logistic regression, and Kaplan–Meier survival analysis were conducted to evaluate the relationship between resting LVEF and CFR/outcome. Results An inverted “U” curve existed between resting LVEF and cCFR (p = 0.06). Both patients with snLVEF (n = 38) and with reduced LVEF (rLVEF, LVEF < 55%) (n = 66) displayed a higher incidence of reduced cCFR than those with normal LVEF (nLVEF, 55% ≤ LVEF < 65%) (n = 106) (57.9% vs 54.5% vs 34.3%, p < 0.01, respectively). Both snLVEF (p < 0.01) and rLVEF (p < 0.05) remained independent predictors for reduced cCFR after multivariable adjustment. Patients with snLVEF encountered more MACE than those with nLVEF (10.5% vs 0.9%, log-rank p = 0.01). Conclusions Patients with snLVEF are prone to impaired cCFR, which may be related to the adverse prognosis. Further investigations are warranted to explore its underlying pathological mechanism and clinical significance.

2021 ◽  
Vol 10 (14) ◽  
pp. 3013
Author(s):  
Juyoun Kim ◽  
Jae-Sik Nam ◽  
Youngdo Kim ◽  
Ji-Hyun Chin ◽  
In-Cheol Choi

Background: Left ventricular dysfunction (LVD) can occur immediately after mitral valve repair (MVr) for degenerative mitral regurgitation (DMR) in some patients with normal preoperative left ventricular ejection fraction (LVEF). This study investigated whether forward LVEF, calculated as left ventricular outflow tract stroke volume divided by left ventricular end-diastolic volume, could predict LVD immediately after MVr in patients with DMR and normal LVEF. Methods: Echocardiographic and clinical data were retrospectively evaluated in 234 patients with DMR ≥ moderate and preoperative LVEF ≥ 60%. LVD and non-LVD were defined as LVEF < 50% and ≥50%, respectively, as measured by echocardiography after MVr and before discharge. Results: Of the 234 patients, 52 (22.2%) developed LVD at median three days (interquartile range: 3–4 days). Preoperative forward LVEF in the LVD and non-LVD groups were 24.0% (18.9–29.5%) and 33.2% (26.4–39.4%), respectively (p < 0.001). Receiver operating characteristic (ROC) analyses showed that forward LVEF was predictive of LVD, with an area under the ROC curve of 0.79 (95% confidence interval: 0.73–0.86), and an optimal cut-off was 31.8% (sensitivity: 88.5%, specificity: 58.2%, positive predictive value: 37.7%, and negative predictive value: 94.6%). Preoperative forward LVEF significantly correlated with preoperative mitral regurgitant volume (correlation coefficient [CC] = −0.86, p < 0.001) and regurgitant fraction (CC = −0.98, p < 0.001), but not with preoperative LVEF (CC = 0.112, p = 0.088). Conclusion: Preoperative forward LVEF could be useful in predicting postoperative LVD immediately after MVr in patients with DMR and normal LVEF, with an optimal cut-off of 31.8%.


2020 ◽  
Vol 21 (4) ◽  
pp. 363-374 ◽  
Author(s):  
Catherine Gebhard ◽  
Monika Maredziak ◽  
Michael Messerli ◽  
Ronny R Buechel ◽  
Fay Lin ◽  
...  

Abstract Aims There are significant sex-specific differences in left ventricular ejection fraction (LVEF), with a higher LVEF being observed in women. We sought to assess the clinical relevance of an increased LVEF in women and men. Methods and results A total of 4632 patients from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry (44.8% women; mean age 58.7 ± 13.2 years in men and 59.5 ± 13.3 years in women, P = 0.05), in whom LVEF was measured by cardiac computed tomography, were categorized according to LVEF (low &lt;55%, normal 55–65%, and high &gt;65%). The prevalence of high LVEF was similar in both sexes (33.5% in women and 32.5% in men, P = 0.46). After 6 years of follow-up, no difference in mortality was observed in patients with high LVEF in the overall cohort (P = 0.41). When data were stratified by sex, women with high LVEF died more often from any cause as compared to women with normal LVEF (8.6% vs. 7.1%, log rank P = 0.032), while an opposite trend was observed in men (5.8% vs. 6.8% in normal LVEF, log rank P = 0.89). Accordingly, a first order interaction term of male sex and high LVEF was significant (hazard ratios 0.63, 95% confidence intervals 0.41–0.98, P = 0.043) in a Cox regression model of all-cause mortality adjusted for age, cardiovascular risk factors, and severity of coronary artery disease (CAD). Conclusion Increased LVEF is highly prevalent in patients referred for evaluation of CAD and is associated with an increased risk of death in women, but not in men. Differentiating between normal and hyperdynamic left ventricles might improve risk stratification in women with CAD. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT01443637.


2017 ◽  
Vol 8 (1) ◽  
pp. 204589321774501 ◽  
Author(s):  
David F. Meoli ◽  
Yan Ru Su ◽  
Evan L. Brittain ◽  
Ivan M. Robbins ◽  
Anna R. Hemnes ◽  
...  

Pulmonary hypertension complicating left heart disease (PH-LHD) is associated with increased morbidity and mortality, especially in patients who develop combined pre- and post-capillary PH (Cpc-PH). Mechanisms underlying PH-LHD are incompletely understood, particularly for individuals with preserved left ventricular ejection fraction (LVEF). We hypothesized that transpulmonary concentrations of biomarkers representing signaling pathways with known effects on the pulmonary circulation could provide insight into the molecular etiology of PH-LHD in patients with preserved LVEF. Blood samples were collected from the pulmonary artery (PA) and wedge positions of outpatients with normal LVEF referred for right heart catheterization. Hemodynamic tracings were reviewed to classify patients as “no PH” (n = 23) or “PH-LHD” (n = 22). A biomarker’s transpulmonary ratio (TPR) was calculated as the quotient of wedge and PA concentrations. The TPR of endothelin 1 (ET-1) was elevated in Cpc-PH (n = 10) compared to no PH or isolated post-capillary PH (Ipc-PH, n = 12); cAMP and cGMP TPRs were not different among groups. Higher ET-1 TPR in Cpc-PH was due to increased wedge ET-1 concentration. Pulmonary vascular resistance (PVR) strongly correlated with wedge ET-1 exclusively in Cpc-PH patients. In patients with normal LVEF and Cpc-PH, ET-1 TPR is higher, due to elevated wedge ET-1, compared to those without PH or with Ipc-PH. Strong correlation between PVR and wedge ET-1, observed only in the Cpc-PH group, may suggest increased pulmonary vascular responsiveness to ET-1 in these patients. These findings implicate elevated pulmonary ET-1 as a marker of, and a potential contributor to, development of Cpc-PH in this population.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Emilie Verrecchia-Ramos ◽  
Olivier Morel ◽  
Paul Retif ◽  
Sinan Ben Mahmoud

Abstract Background Left ventricular ejection fraction (LVEF) is usually measured by cine-cardiac magnetic resonance imaging (MRI), planar and single-photon emission-computerized tomography (SPECT) equilibrium radionuclide angiocardiography (ERNA), and echocardiography. It would be clinically useful to measure LVEF from first-pass positron-emission tomography/computed tomography (PET/CT) radionuclide angiography, but this approach has been limited by fast radiotracer diffusion. Ultra-sensitive digital PET systems can produce high-quality images within 3-s acquisition times. This study determined whether digital PET/CT accurately measured LVEF in an anthropomorphic heart phantom under conditions mimicking radiotracer first-pass into the cardiac cavities. Methods Heart phantoms in end-diastole and end-systole were 3D-printed from a patient’s MRI dataset. Reference left ventricle end-diastole volume (EDV), end-systole volume (ESV), and LVEF were determined by phantom weights before/after water filling. PET/CT (3-s acquisitions), MRI, and planar and SPECT ERNA were performed. EDV, ESV, and/or LVEF were measured by manual and automated cardiac cavity delineation, using clinical segmentation softwares. LVEF was also measured from PET images converted to 2D “pseudo-planar” images along the short axis and horizontal long axis. LVEF was also calculated for planar ERNA images. All LVEF, ESV and EDV values were compared to the reference values assessed by weighing. Results Manually calculated 3D-PET-CT-based EDV, ESV, and LVEF were close to MRI and reference values. Automated calculations on the 3D-PET-CT dataset were unreliable, suggesting that the SPECT-based tool used for this calculation is not well adapted for PET acquisitions. Manual and automated LVEF estimations from “pseudo-planar” PET images were very close/identical to MRI and reference values. Conclusions First-pass “pseudo-planar” PET may be a promising method for estimating LVEF, easy to use in clinical practice. Processing 3D PET images is also a valid method but to date suffers from a lack of well-suited software for automated LV segmentation.


2021 ◽  
Vol 22 (Supplement_3) ◽  
Author(s):  
S Frey ◽  
U Honegger ◽  
OF Clerc ◽  
F Caobelli ◽  
PH Haaf ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Most 82Rubidium-(Rb)-Positron emission tomography (PET) studies for myocardial perfusion, dipyridamole was used as vasodilator. Less data is available for adenosine and regadenoson. Purpose Therefore, the aim was to evaluate the influence of adenosine and regadenoson on left ventricular ejection fraction (LVEF), myocardial blood flow (MBF) and hemodynamics in vasodilator 82Rb-PET. Methods Consecutive patients (n = 2299) with suspected or known coronary artery disease (CAD) undergoing 82Rb-PET were studied and compared according to CAD status and normal/abnormal PET (abnormal defined as summed stress score ≥4). Differences between stress and rest values (LVEF, MBF, hemodynamics) were calculated. The threshold of stress LVEF able to exclude a relevant ischemia (as defined by ≥10% myocardium ischemic based on SDS score) was assessed. Results Rest and stress LVEF differed significantly depending on CAD status and scan results. In patients with suspected CAD, rest/stress LVEF were 68 ± 12% and 73 ± 12% (p &lt; 0.001), in patients with prior CAD 60 ± 14% and 63 ± 15% (p &lt; 0.001). LVEF during stress increased 5 ± 6% in normal compared to 1 ± 8% in abnormal PET (p &lt; 0.001). Global rest MBF (rMBF), stress MBF (sMBF) and myocardial flow reserve (sMBF/rMBF) were significantly higher in suspected CAD patients compared to prior CAD patients (1.3 ± 0.5, 3.3 ± 0.9, 2.6 ± 0.8 and 1.2 ± 0.4, 2.6 ± 0.8, 2.4 ± 0.8 ml/g/min, respectively, p &lt; 0.001), and in normal versus abnormal scans, irrespective of CAD status (no CAD: 1.4 ± 0.5, 3.5 ± 0.8, 2.8 ± 0.8 and 1.2 ± 0.8, 2.5 ± 0.8, 2.2 ± 0.7; known CAD: 1.3 ± 0.4, 3.1 ± 0.8, 2.7 ± 0.8 and 1.1 ± 0.4, 2.3 ± 0.7, 2.2 ± 0.7 ml/g/min, respectively, p &lt; 0.001). LVEF and hemodynamic values were similar for adenosine and regadenoson stress. Stress LVEF ≥70% excluded relevant ischemia with a negative predictive value (NPV) of 94% (CI 92-95%). Conclusions Rest/stress LVEF, LVEF reserve and MBF values are lower in abnormal compared with normal scans. Adenosine and regadenoson seem to have similar effect on stress LVEF, MBF and hemodynamics. A stress LVEF ≥70% has a high NPV to exclude relevant ischemia.


Sign in / Sign up

Export Citation Format

Share Document