T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer

2012 ◽  
Vol 62 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Kathrin Bauer ◽  
Nina Nelius ◽  
Miriam Reuschenbach ◽  
Moritz Koch ◽  
Jürgen Weitz ◽  
...  
Allergy ◽  
2021 ◽  
Author(s):  
Alba Angelina ◽  
Mario Pérez‐Diego ◽  
Angel Maldonado ◽  
Beate Rückert ◽  
Mübeccel Akdis ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaozhou Zhang ◽  
Timothy C. Borbet ◽  
Angela Fallegger ◽  
Matthew F. Wipperman ◽  
Martin J. Blaser ◽  
...  

ABSTRACT Antibiotic exposure early in life and other practices impacting the vertical transmission and ordered assembly of a diverse and balanced gut microbiota are associated with a higher risk of immunological and metabolic disorders such as asthma and allergy, autoimmunity, obesity, and susceptibility to opportunistic infections. In this study, we used a model of perinatal exposure to the broad-spectrum antibiotic ampicillin to examine how the acquisition of a dysbiotic microbiota affects neonatal immune system development. We found that the resultant dysbiosis imprints in a manner that is irreversible after weaning, leading to specific and selective alteration of the colonic CD4+ T-cell compartment. In contrast, colonic granulocyte and myeloid lineages and other mucosal T-cell compartments are unaffected. Among colonic CD4+ T cells, we observed the most pronounced effects on neuropilin-negative, RORγt- and Foxp3-positive regulatory T cells, which are largely absent in antibiotic-exposed mice even as they reach adulthood. Immunomagnetically isolated dendritic cells from antibiotic-exposed mice fail to support the generation of Foxp3+ regulatory T cells (Tregs) from naive T cells ex vivo. The perinatally acquired dysbiotic microbiota predisposes to dysregulated effector T-cell responses to Citrobacter rodentium or ovalbumin challenge. The transfer of the antibiotic-impacted, but not healthy, fecal microbiota into germfree recipients recapitulates the selective loss of colonic neuropilin-negative, RORγt- and Foxp3-positive Tregs. The combined data indicate that the early-life acquisition of a dysbiotic microbiota has detrimental effects on the diversity and microbial community composition of offspring that persist into adulthood and predisposes to inappropriate T-cell responses that are linked to compromised immune tolerance. IMPORTANCE The assembly of microbial communities that populate all mucosal surfaces of the human body begins right after birth. This process is prone to disruption as newborns and young infants are increasingly exposed to antibiotics, both deliberately for therapeutic purposes, and as a consequence of transmaternal exposure. We show here using a model of ampicillin administration to lactating dams during their newborn offspring’s early life that such exposures have consequences that persist into adulthood. Offspring acquire their mother’s antibiotic-impacted microbiota, which compromises their ability to generate a colonic pool of CD4+ T cells, particularly of colonic regulatory T cells. This Treg deficiency cannot be corrected by cohousing with normal mice later and is recapitulated by reconstitution of germfree mice with microbiota harvested from antibiotic-exposed donors. As a consequence of their dysbiosis, and possibly of their Treg deficiency, antibiotic-impacted offspring generate dysregulated Th1 responses to bacterial challenge infection and develop more severe symptoms of ovalbumin-induced anaphylaxis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A72-A72
Author(s):  
Orsolya Lorincz ◽  
Levente Molnar ◽  
Zsolt Csiszovszki ◽  
Eszter Somogyi ◽  
Jozsef Toth ◽  
...  

BackgroundVaccines have little chance of destroying heterogeneous tumor cells since they rarely induce polyclonal T-cell responses against the tumor. The main challenge is the accurate identification of tumor targets recognizable by T cells. Presently, 6–8% of neoepitopes selected based on the patients‘ tumor biopsies are confirmed as real T cell targets.1 2. To overcome this limitation, we developed a computational platform called Personal Antigen Selection Calculator (PASCal) that identifies frequently presented immunogenic peptide sequences built on HLA-genetics and tumor profile of thousands of real individuals.3 Here we show the performance of PASCal for the identification of both shared and personalized tumor targets in metastatic colorectal cancer (mCRC) and breast cancer subjects.MethodsExpression frequency of the tumor-specific antigens (TSAs) ranked in PASCal’s database (based on 7,548 CRC specimen) was compared to the RNA-sequencing data of CRC tumors obtained from TCGA. Using PASCal, 12 shared PEPIs (epitopes restricted to at least 3 HLA class I alleles of a subject from an in silico cohort) derived from 7 TSAs were selected as frequent targets (calculated probability: average 2.5 [95%CI 2.4–2.8] TSAs/patient). Spontaneous immune responses against each of the twelve 9mer peptides were determined by ELISpot using PBMCs of 10 mCRC subjects who participated in the OBERTO-101 study.4 PEPIs selected for a breast cancer subject based on her HLA genotype were also tested.ResultsEach of the 106 tumors analyzed expressed at least 13, average 15 of the 20 top-ranked TSAs in PASCal’s database confirming their prevalence in CRC. 7/10 subjects had spontaneous CD8+ T-cell responses against at least one peptide selected with PASCal. Each peptide (12/12) was recognized by at least one patient. Patients‘ T-cells reacted with average 3.6/12 (30%) peptides confirming the expression of average 2.8 [95%CI 1.0–4.6] TSAs (n=10). After HLA-matching, among the subjects for whom we could select at least 4 PEPIs (average 5) from the list of 12 peptides (n=6), average 2.5 (50%) peptides were positive. Of the 12 PEPIs selected with PASCal for a breast cancer subject, we detected spontaneous T-cell responses against 9 PEPIs, indicating that at least 75% of the selected peptides were present in the subject’s tumor and were recognized by T-cells.ConclusionsPASCal platform accommodates both tumor- and patient heterogeneity and identifies non-mutated tumor targets that may trigger polyclonal cytotoxic T-cell responses. It is a rapid tool for the design of both off-the-shelf and personalized cancer vaccines negating the need for tumor biopsy.ReferencesWells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 2020:183(3):818–34.e13.Bulik-Sullivan B, Busby J, Palmer CD, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotech 2018:37:55–63.Somogyi E, Csiszovszki Z, Lorincz O, et al. 1181PDPersonal antigen selection calculator (PASCal) for the design of personal cancer vaccines. Annal Oncol 2019:30(Supplement_5):v480-v81.Hubbard J, Cremolini C, Graham R, et al. P329 PolyPEPI1018 off-the shelf vaccine as add-on to maintenance therapy achieved durable treatment responses in patients with microsatellite-stable metastatic colorectal cancer patients (MSS mCRC). J ImmunoTher Cancer 2019:7(1):282.


2010 ◽  
Vol 90 ◽  
pp. 147
Author(s):  
I. G. Harper ◽  
K. Saeb-Parsy ◽  
C. J. Callaghan ◽  
R. Motallebzadeh ◽  
E. M. Bolton ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 377-377 ◽  
Author(s):  
Daniel J Hui ◽  
Gary C Pien ◽  
Etiena Basner-Tschakarjan ◽  
Federico Mingozzi ◽  
Jonathan D Finn ◽  
...  

Abstract Abstract 377 Hemophilia B represents a promising model for the development of adeno-associated viral (AAV) vectors-based gene therapeutics. In the first clinical trial for AAV serotype 2 mediated gene transfer of Factor IX (F.IX) to the liver of severe hemophilia B subjects, transgene expression was short-lived with a gradual decline of F.IX levels. The loss of transgene expression was accompanied by a transient transaminitis, which we hypothesized to be the result of the reactivation of a pool of capsid-specific memory CD8+ T cells originated from a previous exposure to wild-type AAV. These results were unanticipated since previous work in small and large animal models showed that AAV administration is uneventful, allowing prolonged expression of F.IX transgene at therapeutic levels. We developed an in vitro cytotoxicity assay using a human hepatocyte cell line expressing HLA-B*0702, a common MHC class I allele for which the AAV capsid immunodominant epitope VPQYGYLTL was identified. Using this model, we demonstrated that HLA-matched AAV-specific effector CD8+ T cells were able to lyse target hepatocytes transduced with AAV-2. We now use this in vitro model of CTL killing of AAV-transduced hepatocytes to demonstrate the efficacy of a novel strategy to circumvent undesirable immune response through the engagement of regulatory T cells. A recently characterized MHC Class II-restricted T cell epitope (Tregitope) in the Fc fragment of IgG has been shown to induce regulatory T cells in vitro and in vivo (Blood, 2008; 112: 3303-3311). AAV-specific HLA-B*0702 effector cells expanded in the presence of a human Tregitope peptide resulted in 79% to 89% inhibition of cytotoxic activity against peptide-pulsed and AAV-transduced target cells, respectively. These results were confirmed using PBMCs from 5 different donors. A similar degree of inhibition of CTL activity was observed for the HLA allele A*0101, which binds to the AAV-derived epitope SADNNNSEY; co-culture of effector cells with the Tregitope inhibited CTL-mediated killing by 60%. Interestingly, the same Tregitope efficiently mediated suppression of CTL activity in subjects carrying different HLA alleles, indicating a high level of promiscuity of Tregitope binding. Staining for the regulatory T cell markers CD4, CD25, and FoxP3 supported the hypothesis that Tregitopes suppress T cell responses by expanding regulatory T cells; 62.2% of the CD4+ population stained positive for CD25 and FoxP3 in PBMCs expanded against AAV epitopes in the presence of Tregitope, compared with PBMCs expanded against an AAV epitope alone (3.63%), or against an AAV epitope and an irrelevant control peptide (1.94%). Polyfunctional analysis for markers for T cell activation showed that CD8+ T cells incubated in the presence of Tregitope had an approximately 5-fold decrease in production of IL-2 and IFN-γand a 2-fold reduction in TNF-α production, indicating levels of activation close to naïve CD8+ T cells. We further characterized the mechanism of action of Tregitopes by showing that Tregitopes are required at the time of CD8+ T cell priming, as CTL activity of AAV-expanded CD8+ T cells against transduced hepatocytes was not inhibited by the CD4+ T cell fraction of PBMC expanded separately in vitro with Tregitopes only. We conclude that the use of Tregitopes represents a promising strategy for antigen-specific, Treg-mediated modulation of capsid-specific T cell responses. Disclosures: Martin: EpiVax: Employment. De Groot:EpiVax, Inc.: Employment, Equity Ownership.


2003 ◽  
Vol 71 (4) ◽  
pp. 1755-1762 ◽  
Author(s):  
Anna Lundgren ◽  
Elisabeth Suri-Payer ◽  
Karin Enarsson ◽  
Ann-Mari Svennerholm ◽  
B. Samuel Lundin

ABSTRACT Helicobacter pylori colonizes the gastric and duodenal mucosa. The infection normally persists for life and causes peptic ulcers and gastric cancer in a subset of infected individuals. We hypothesized that the inability to clear the infection may be a consequence of H. pylori-specific regulatory T cells that actively suppress T-cell responses. Therefore, we characterized the T-cell responses to H. pylori in H. pylori-infected individuals without any subjective symptoms and in uninfected control subjects and investigated the role of regulatory CD4+ CD25high T cells during infection. The stimulation of CD4+ peripheral blood T cells with monocyte-derived dendritic cells pulsed with a membrane preparation of H. pylori resulted in proliferation and gamma interferon production in both infected and uninfected individuals. Sorted memory cells from infected individuals responded less than cells from uninfected subjects, and the unresponsiveness could be abolished by depletion of CD4+ CD25high regulatory T cells or the addition of interleukin 2. Furthermore, CD4+ CD25high T cells suppressed H. pylori-induced responses in cocultures with CD25low/− cells. Tetanus toxoid induced comparable responses in memory cells from infected and uninfected individuals in both the presence and the absence of regulatory T cells, suggesting that the suppression was H. pylori specific. In conclusion, we have shown that H. pylori-infected individuals have impaired memory CD4+ T-cell responses to H. pylori that are linked to the presence of H. pylori-specific regulatory T cells that actively suppress the responses.


Sign in / Sign up

Export Citation Format

Share Document