Effect of Platelet-Rich Fibrin on Fat Grafting in Animal Models: A Meta-Analysis

2019 ◽  
Vol 44 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Ruiquan Liu ◽  
Yi Long ◽  
Liu Liu ◽  
Xian Zhao
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


Author(s):  
Marina Gabriela M. C. Mori da Cunha ◽  
Katerina Mackova ◽  
Lucie Hajkova Hympanova ◽  
Maria Augusta T. Bortolini ◽  
Jan Deprest

Abstract Introduction and hypothesis We aimed to summarize the knowledge on the pathogenesis of pelvic organ prolapse (POP) generated in animal models. Methods We searched MEDLINE, Embase, Cochrane and the Web of Science to establish what animal models are used in the study of suggested risk factors for the development of POP, including pregnancy, labor, delivery, parity, aging and menopause. Lack of methodologic uniformity precluded meta-analysis; hence, results are presented as a narrative review. Results A total of 7426 studies were identified, of which 51 were included in the analysis. Pregnancy has a measurable and consistent effect across species. In rats, simulated vaginal delivery induces structural changes in the pelvic floor, without complete recovery of the vaginal muscular layer and its microvasculature, though it does not induce POP. In sheep, first vaginal delivery has a measurable effect on vaginal compliance; measured effects of additional deliveries are inconsistent. Squirrel monkeys can develop POP. Denervation of their levator ani muscle facilitates this process in animals that delivered vaginally. The models used do not develop spontaneous menopause, so it is induced by ovariectomy. Effects of menopause depend on the age at ovariectomy and the interval to measurement. In several species menopause is associated with an increase in collagen content in the longer term. In rodents there were no measurable effects of age apart of elastin changes. We found no usable data for other species. Conclusion In several species there are measurable effects of pregnancy, delivery and iatrogenic menopause. Squirrel monkeys can develop spontaneous prolapse.


2021 ◽  
pp. 197140092110268
Author(s):  
Seyedeh Niloufar Rafiei Alavi ◽  
Arian Madani Neishaboori ◽  
Mahmoud Yousefifard

Background As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. Methods The search strategy was developed based on keywords related to ‘spinal cord injury’ and ‘extracorporeal shockwave therapy’. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. Results Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05–2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 ( P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). Conclusion Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.


2021 ◽  
Author(s):  
Gabriel N. Pires ◽  
Thainá B. Oliveira ◽  
Victoria F. F. Mello ◽  
Andréia G. Bezerra ◽  
Cathalijn H. C. Leenaars ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127256 ◽  
Author(s):  
Han-Jin Cui ◽  
Hao-yu He ◽  
A-Li Yang ◽  
Hua-Jun Zhou ◽  
Cong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document