In vitro 3D-kinematics of the upper cervical spine: helical axis and simulation for axial rotation and flexion extension

2009 ◽  
Vol 32 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Pierre-Michel Dugailly ◽  
Stéphane Sobczak ◽  
Victor Sholukha ◽  
Serge Van Sint Jan ◽  
Patrick Salvia ◽  
...  
2021 ◽  
pp. 1-13
Author(s):  
Waseem Ur Rahman ◽  
Wei Jiang ◽  
Guohua Wang ◽  
Zhijun Li

BACKGROUND: The finite element method (FEM) is an efficient and powerful tool for studying human spine biomechanics. OBJECTIVE: In this study, a detailed asymmetric three-dimensional (3D) finite element (FE) model of the upper cervical spine was developed from the computed tomography (CT) scan data to analyze the effect of ligaments and facet joints on the stability of the upper cervical spine. METHODS: A 3D FE model was validated against data obtained from previously published works, which were performed in vitro and FE analysis of vertebrae under three types of loads, i.e. flexion/extension, axial rotation, and lateral bending. RESULTS: The results show that the range of motion of segment C1–C2 is more flexible than that of segment C2–C3. Moreover, the results from the FE model were used to compute stresses on the ligaments and facet joints of the upper cervical spine during physiological moments. CONCLUSION: The anterior longitudinal ligaments (ALL) and interspinous ligaments (ISL) are found to be the most active ligaments, and the maximum stress distribution is appear on the vertebra C3 superior facet surface under both extension and flexion moments.


2020 ◽  
Vol 8 ◽  
Author(s):  
Ana I. Lorente ◽  
César Hidalgo García ◽  
Jacobo Rodríguez Sanz ◽  
Mario Maza Frechín ◽  
Albert Pérez Bellmunt

Instability is a serious and life-threatening diagnosis in the upper cervical spine (occiput-atlas-axis), and a depth understanding of normal range of movement is required for clinical manual evaluation. To improve this knowledge, ten upper cervical spine specimens have been tested in flexion, extension, lateral bending, and axial rotation. 


2021 ◽  
pp. 110872
Author(s):  
Ana I. LORENTE ◽  
César HIDALGO-GARCÍA ◽  
Pablo FANLO-MAZAS ◽  
Jacobo RODRÍGUEZ-SANZ ◽  
Carlos LÓPEZ-de-CELIS ◽  
...  

Author(s):  
Ana I Lorente ◽  
Mario Maza Frechín ◽  
Albert Pérez Bellmunt ◽  
César Hidalgo García

The rotation stress test is used to evaluate stability of the craniocervical junction by assuming that it gives the maximum rotation. However, a more complex manipulation might show a higher rotation: the rotation with extension and contralateral bending. This was tested in vitro with ten upper cervical spine specimens.


2005 ◽  
Vol 8 (sup1) ◽  
pp. 87-88 ◽  
Author(s):  
P. M. Dugailly ◽  
S. Sobczak ◽  
P. Salvia ◽  
V. Sholovkha ◽  
P. Klein ◽  
...  

Radiology ◽  
2003 ◽  
Vol 228 (2) ◽  
pp. 569-575 ◽  
Author(s):  
Grant M. Stevens ◽  
Robyn L. Birdwell ◽  
Christopher F. Beaulieu ◽  
Debra M. Ikeda ◽  
Norbert J. Pelc

Sign in / Sign up

Export Citation Format

Share Document