alar ligament
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
pp. 110872
Author(s):  
Ana I. LORENTE ◽  
César HIDALGO-GARCÍA ◽  
Pablo FANLO-MAZAS ◽  
Jacobo RODRÍGUEZ-SANZ ◽  
Carlos LÓPEZ-de-CELIS ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
César Hidalgo-García ◽  
Ana I. Lorente ◽  
Carlos López-de-Celis ◽  
Orosia Lucha-López ◽  
Miguel Malo-Urriés ◽  
...  

AbstractThis study compares upper cervical spine range of motion (ROM) in the three cardinal planes before and after occiput-atlas (C0–C1) stabilization. After the dissection of the superficial structures to the alar ligament and the fixation of C2, ten cryopreserved upper cervical columns were manually mobilized in the three cardinal planes of movement without and with a screw stabilization of C0–C1. Upper cervical ROM and mobilization force were measured using the Vicon motion capture system and a load cell respectively. The ROM without C0–C1 stabilization was 19.8° ± 5.2° in flexion and 14.3° ± 7.7° in extension. With stabilization, the ROM was 11.5° ± 4.3° and 6.6° ± 3.5°, respectively. The ROM without C0–C1 stabilization was 4.7° ± 2.3° in right lateral flexion and 5.6° ± 3.2° in left lateral flexion. With stabilization, the ROM was 2.3° ± 1.4° and 2.3° ± 1.2°, respectively. The ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° and 23.7° ± 8.5° respectively. Stabilization of C0–C1 reduced the upper cervical ROM by 46.9% in the sagittal plane, 55.3% in the frontal plane, and 15.6% in the transverse plane. Also, the resistance to movement during upper cervical mobilization increased following C0–C1 stabilization.


Author(s):  
Ekaterina Smotrova ◽  
Lucy Morris ◽  
Donal McNally

Abstract Purpose We present a unique opportunity to compare standard neck injury criteria (used by the automotive industry to predict injury) with real-life injuries. The injuries sustained during, and the overall kinematics of, a television demonstration of whiplash mechanics were used to inform and validate a vertebral level model of neck mechanics to examine the relevance of current injury criteria used by the automotive industry. Methods Frontal and rear impact pulses, obtained from videos of sled motion, were used to drive a MADYMO human model to generate detailed segmental level biomechanics. The maximum amplitude of the frontal and rear crash pulses was 166 ms−2 and 196 ms−2, respectively, both with a duration of 0.137 s. The MADYMO model was used to predict standard automotive neck injury criteria as well as detailed mechanics of each cervical segment. Results Whilst the subject suffered significant upper neck injuries, these were not predicted by conventional upper neck injury criteria (Nij and Nkm). However, the model did predict anterior accelerations of C1 and C2 of 40 g, which is 5 times higher than the threshold of the acceleration for alar ligament injury. Similarly, excessive anterior shear displacement (15 mm) of the skull relative to C2 was predicted. Predictions of NIC, an injury criterion relevant to the lower neck, as well as maximum flexion angles for the lower cervical segments (C3–T1) exceeded injury thresholds. Conclusion The criteria used by the automotive industry as standard surrogates for upper neck injury (Nij and Nkm) did not predict the significant cranio-cervical junction injury observed clinically.


2020 ◽  
Vol 80 ◽  
pp. 105185
Author(s):  
César Hidalgo-García ◽  
Ana I. Lorente ◽  
Orosia Lucha-López ◽  
José Manuel Auría-Apilluelo ◽  
Miguel Malo-Urriés ◽  
...  

2020 ◽  
pp. 219256822094145
Author(s):  
Basem Ishak ◽  
Alexander von Glinski ◽  
Graham Dupont ◽  
Stefan Lachkar ◽  
Emre Yilmaz ◽  
...  

Study Design: In vitro biomechanical study. Objective: The strength of the alar ligament has been described inconsistently, possibly because of the nonphysiological biomechanical testing models, and the inability to test the ligament with both attachments simultaneously. The purpose of this biomechanical model was to reevaluate the alar ligament’s tensile strength with both bony attachments, while also keeping the transverse ligament intact, all in a more physiological biomechanical model that mimics the mechanism of traumatic injury closely. Methods: Eleven fresh-frozen occipito-atlanto-axial (C0-C1-C2) specimens were harvested from individuals whose mean age at death was 77.4 years (range 46-97 years). Only the alar and transverse ligaments were preserved, and the bony C0-C1-C2 complex was left intact. Axial tension was exerted on the dens to displace it posteriorly, while the occipito-axial complex was fixed anteriorly. A device that applies controlled increasing force was used to test the tensile strength (M2-200, Mark-10 Corporation). Results: The mean force required for the alar ligament to fail was 394 ± 52 N (range 317-503 N). However, both the right and left alar ligaments ruptured simultaneously in 10 specimens. The ligament failed most often at the dens (n = 10), followed by occipital condyle rupture (n = 1). The transverse ligament remained intact in all specimens. Conclusions: When both the right and left alar ligament were included, the total alar ligament failure occurred at an average force of 394 N. The alar ligament failed before the transverse ligament.


2020 ◽  
Vol 46 ◽  
pp. 102110
Author(s):  
César Hidalgo-García ◽  
Ana I. Lorente ◽  
Jacobo Rodríguez-Sanz ◽  
José Miguel Tricás-Moreno ◽  
Mathias Simon ◽  
...  

Author(s):  
Daniele Starnoni ◽  
Timo Ecker ◽  
Juan Barges-Coll

AbstractC1 fractures with an intact transverse ligament are usually treated conservatively. Patients who present with a progressive diastasis of bone fragments and a progressive articular subluxation mainly attributed to progressive lengthening of the transverse ligament (TAL) fibers can be treated with a C1 “C-clamp” fusion.A 75-year-old male who sustained a motor vehicle accident was neurologically intact. A computed tomography (CT) imaging demonstrated a Jefferson's type-C1 fracture with a slight lateral displacement of the C1 left lateral mass (LM) and a rotatory subluxation on the right. MRI showed an intact TAL and demonstrated an isolated rupture of the left alar ligament. Conservative treatment was chosen. Radiographic follow-up showed, at 3 months, progressive lateral mass displacement, most likely due to elongation of the TAL fibers; this was also associated with a persistent mechanical neck pain. For this reason, we performed a posterior reduction and internal fixation in a C-clamp fashion by placement of C1 lateral mass screws and posterior compression sparing the C1–2 joint. Using navigation, a 3.5-mm screw was inserted into the LM bilaterally. The screw heads were then connected with a rod and compression was applied before tightening. Postoperative CT scan demonstrated a satisfying reduction and further imaging will be made during the follow-up. The patient had a considerable relief of neck pain. Simple lateral mass fixation with C-clamp technique is a reasonable option in case of isolated C1 fractures in patients who have failed conservative management while preserving the range of motion (ROM) at the atlanto–axial joint.The link to the video can be found at: https://youtu.be/x8bsVwzCt_M.


2020 ◽  
Vol 24 (01) ◽  
pp. 5-6
Author(s):  
Arne Vielitz

Von Piekartz H, Maloul R, Hoffmann M et al. Diagnostic accuracy and validity of three manual examination tests to identify alar ligament lesions: results of a blinded case-control study. J Man Manip Ther 2019; 27: 83–91. doi: 10.1080/10669817.2018.1539434. Epub 2018 Nov 15


2020 ◽  
pp. 219256821989654
Author(s):  
Basem Ishak ◽  
Graham Dupont ◽  
Stefan Lachkar ◽  
Emre Yilmaz ◽  
Alexander Von Glinski ◽  
...  

Study Design: In vitro biomechanical study. Objective: The transverse ligament is the strongest ligament of the craniocervical junction and plays a critical role in atlanto-axial stability. The goal of this cadaveric study, and the subsequent study (part II), was to reevaluate the force required for the transverse ligament and alar ligament to fail in a more physiological biomechanical model in elderly specimens. Methods: Twelve C1-2 specimens were harvested from fresh-frozen Caucasian cadavers with a mean age at death of 81 years (range 68-89 years). Only the transverse ligament was preserved, and the bony C1-2 complex was left intact. The dens was pulled away from the anterior arch of C1 using a strength test machine that applies controlled increasing force. After testing, the axis was split in half to check for hidden pathologies and osteoporosis. The differences in the failure force between sex and age groups (group 1: <80 years, group 2: >80 years) were compared. Results: The mean force required for the transverse ligament to fail was 236.2 ± 66 N (range 132-326 N). All but 2 specimens had significant osteoporotic loss of trabecular bone. No significant differences between sex and age groups were found. Conclusions: The transverse ligament’s failure in elderly specimens occurred at an average force of 236 N, which was lower than that reported in the previous literature. The ligament’s failure force in younger patients differs and may be similar to the findings published to date.


Sign in / Sign up

Export Citation Format

Share Document