scholarly journals A population pharmacokinetic model of cabozantinib in healthy volunteers and patients with various cancer types

2018 ◽  
Vol 81 (6) ◽  
pp. 1071-1082 ◽  
Author(s):  
Steven Lacy ◽  
Bei Yang ◽  
Jace Nielsen ◽  
Dale Miles ◽  
Linh Nguyen ◽  
...  
2017 ◽  
Vol 61 (4) ◽  
Author(s):  
S. P. van Rijn ◽  
M. A. Zuur ◽  
R. van Altena ◽  
O. W. Akkerman ◽  
J. H. Proost ◽  
...  

ABSTRACT Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% T MIC). To assess the 40% T MIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC0–24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation (n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% T MIC with the free fraction (f 40% T MIC) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC0–24) in MDR-TB patients by 6.8% (range, −17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h (r 2 = 0.78, mean prediction error = −0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, −15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% T MIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiao-duo Guan ◽  
Xian-ge Tang ◽  
Ying-jun Zhang ◽  
Hong-ming Xie ◽  
Lin Luo ◽  
...  

Yimitasvir is a novel, oral hepatitis C virus (HCV) non-structural protein 5A inhibitor for the treatment of chronic HCV genotype 1 infection. The objective of this analysis was to develop a population pharmacokinetic model of yimitasvir in Chinese healthy volunteers and HCV infection patients. The model was performed using data from 219 subjects across six studies. Nonlinear mixed effects models were developed using Phoenix NLME software. The covariates were evaluated using a stepwise forward inclusion (p < 0.01) and then a backward exclusion procedure (p < 0.001). A two-compartment model with sequential zero-first order absorption and first-order elimination reasonably described yimitasvir pharmacokinetics (PK). The apparent oral clearance and central volume of distribution were 13.8 l·h−1 and 188 l, respectively. The bioavailability (F) of yimitasvir decreased 12.9% for each 100 mg dose increase. Food was found to affect absorption rate (Ka) and F. High-fat meal decreased Ka and F by 90.9% and 38.5%, respectively. Gender and alanine aminotransferase were identified as significant covariates on apparent oral clearance. Female subjects had lower clearance than male subjects. Zero-order absorption duration was longer in healthy volunteers (2.17 h) than that in patients (1.43 h). The population pharmacokinetic model described yimitasvir PK profile well. Food decreased Ka and F significantly, so it was recommended to take yimitasvir at least 2 h before or after a meal. Other significant covariates were not clinically important.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S529-S529
Author(s):  
Scott A Van Wart ◽  
Christopher Stevens ◽  
Zoltan Magyarics ◽  
Steven A Luperchio ◽  
Paul G Ambrose

Sign in / Sign up

Export Citation Format

Share Document