Derivation of the real-time formalism from first principles in thermal field theory

1997 ◽  
Vol 75 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hubert Mabilat
2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Torbjörn Lundberg ◽  
Roman Pasechnik

AbstractThis review represents a detailed and comprehensive discussion of the Thermal Field Theory (TFT) concepts and key results in Yukawa-type theories. We start with a general pedagogical introduction into the TFT in the imaginary- and real-time formulation. As phenomenologically relevant implications, we present a compendium of thermal decay rates for several typical reactions calculated within the framework of the real-time formalism and compared to the imaginary-time results found in the literature. Processes considered here are those of a neutral (pseudo)scalar decaying into two distinct (pseudo)scalars or into a fermion-antifermion pair. These processes are extended from earlier works to include chemical potentials and distinct species in the final state. In addition, a (pseudo)scalar emission off a fermion line is also discussed. These results demonstrate the importance of thermal effects in particle decay observables relevant in many phenomenological applications in systems at high temperatures and densities.


2011 ◽  
Vol 26 (17) ◽  
pp. 2881-2897 ◽  
Author(s):  
M. CHEKERKER ◽  
M. LADREM ◽  
F. C. KHANNA ◽  
A. E. SANTANA

The thermofield dynamics, a real-time formalism for finite temperature quantum field theory, is used to calculate the rates for e+e- reactions at finite temperature. The results show the role of temperature in defining a hadronic state after the plasma has been cooled down.


Sign in / Sign up

Export Citation Format

Share Document