fermion line
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
N. Ahmadiniaz ◽  
V. M. Banda Guzmán ◽  
F. Bastianelli ◽  
O. Corradini ◽  
J. P. Edwards ◽  
...  

Abstract In the first part of this series, we employed the second-order formalism and the “symbol” map to construct a particle path-integral representation of the electron propagator in a background electromagnetic field, suitable for open fermion-line calculations. Its main advantages are the avoidance of long products of Dirac matrices, and its ability to unify whole sets of Feynman diagrams related by permutation of photon legs along the fermion lines. We obtained a Bern-Kosower type master formula for the fermion propagator, dressed with N photons, in terms of the “N-photon kernel,” where this kernel appears also in “subleading” terms involving only N − 1 of the N photons.In this sequel, we focus on the application of the formalism to the calculation of on-shell amplitudes and cross sections. Universal formulas are obtained for the fully polarised matrix elements of the fermion propagator dressed with an arbitrary number of photons, as well as for the corresponding spin-averaged cross sections. A major simplification of the on-shell case is that the subleading terms drop out, but we also pinpoint other, less obvious simplifications.We use integration by parts to achieve manifest transversality of these amplitudes at the integrand level and exploit this property using the spinor helicity technique. We give a simple proof of the vanishing of the matrix element for “all +” photon helicities in the massless case, and find a novel relation between the scalar and spinor spin-averaged cross sections in the massive case. Testing the formalism on the standard linear Compton scattering process, we find that it reproduces the known results with remarkable efficiency. Further applications and generalisations are pointed out.


2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Torbjörn Lundberg ◽  
Roman Pasechnik

AbstractThis review represents a detailed and comprehensive discussion of the Thermal Field Theory (TFT) concepts and key results in Yukawa-type theories. We start with a general pedagogical introduction into the TFT in the imaginary- and real-time formulation. As phenomenologically relevant implications, we present a compendium of thermal decay rates for several typical reactions calculated within the framework of the real-time formalism and compared to the imaginary-time results found in the literature. Processes considered here are those of a neutral (pseudo)scalar decaying into two distinct (pseudo)scalars or into a fermion-antifermion pair. These processes are extended from earlier works to include chemical potentials and distinct species in the final state. In addition, a (pseudo)scalar emission off a fermion line is also discussed. These results demonstrate the importance of thermal effects in particle decay observables relevant in many phenomenological applications in systems at high temperatures and densities.


Science ◽  
2019 ◽  
Vol 365 (6459) ◽  
pp. 1278-1281 ◽  
Author(s):  
Ilya Belopolski ◽  
Kaustuv Manna ◽  
Daniel S. Sanchez ◽  
Guoqing Chang ◽  
Benedikt Ernst ◽  
...  

Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet Co2MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in this magnet. Our experimental results suggest a rich interplay of strongly interacting electrons and topology in quantum matter.


2013 ◽  
Author(s):  
Abilio De Freitas ◽  
Johannes Bluemlein ◽  
Wilhelmus van Neerven

Sign in / Sign up

Export Citation Format

Share Document