Roles of the RAM signaling network in cell cycle progression in Saccharomyces cerevisiae

2006 ◽  
Vol 49 (6) ◽  
pp. 384-392 ◽  
Author(s):  
Lydia M. Bogomolnaya ◽  
Ritu Pathak ◽  
Jinbai Guo ◽  
Michael Polymenis
RNA ◽  
2000 ◽  
Vol 6 (11) ◽  
pp. 1565-1572 ◽  
Author(s):  
CAROLINE S. RUSSELL ◽  
SIGAL BEN-YEHUDA ◽  
IAN DIX ◽  
MARTIN KUPIEC ◽  
JEAN D. BEGGS

1995 ◽  
Vol 15 (10) ◽  
pp. 5482-5491 ◽  
Author(s):  
R C Santos ◽  
N C Waters ◽  
C L Creasy ◽  
L W Bergman

The PHO85 gene of Saccharomyces cerevisiae encodes a cyclin-dependent kinase involved in both transcriptional regulation and cell cycle progression. Although a great deal is known concerning the structure, function, and regulation of the highly homologous Cdc28 protein kinase, little is known concerning these relationships in regard to Pho85. In this study, we constructed a series of Pho85-Cdc28 chimeras to map the region(s) of the Pho85 molecule that is critical for function of Pho85 in repression of acid phosphatase (PHO5) expression. Using a combination of site-directed and ethyl methanesulfonate-induced mutagenesis, we have identified numerous residues critical for either activation of the Pho85 kinase, interaction of Pho85 with the cyclin-like molecule Pho80, or substrate recognition. Finally, analysis of mutations analogous to those previously identified in either Cdc28 or cdc2 of Schizosaccharomyces pombe suggested that the inhibition of Pho85-Pho80 activity in mechanistically different from that seen in the other cyclin-dependent kinases.


2000 ◽  
Vol 113 (10) ◽  
pp. 1687-1694 ◽  
Author(s):  
F. Reymond ◽  
C. Wirbelauer ◽  
W. Krek

Present in organisms ranging from yeast to man, homologues of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme CDC34 have been shown to play important roles in the regulation of cell cycle progression and checkpoint function. Here we analyze the expression and intracellular localization of endogenous CDC34 during mammalian cell cycle progression. We find that CDC34 protein is constitutively expressed during all stages of the cell cycle. Immunofluorescence experiments reveal that during interphase, endogenous CDC34 is localized to distinct speckles in both the nucleus and the cytoplasm. The presence of CDC34 in these compartments has also been established by biochemical fractionation experiments. Interestingly, nuclear localization depends on the presence of specific carboxy-terminal CDC34 sequences that have previously been shown to be required for CDC34's cell cycle function in Saccharomyces cerevisiae. Finally, we find that in anaphase and not during early stages of mitosis, CDC34 colocalizes with (beta)-tubulin at the mitotic spindle, implying that it may contribute to spindle function at later stages of mitosis. Taken together, these results support a model in which CDC34 ubiquitin-conjugating enzyme functions in the regulation of nuclear and cytoplasmic activities as well as in the process of chromosome segregation at the onset of anaphase in mammalian cells.


2000 ◽  
Vol 113 (7) ◽  
pp. 1199-1211
Author(s):  
G. Buscemi ◽  
F. Saracino ◽  
D. Masnada ◽  
M.L. Carbone

The organization of the actin cytoskeleton is essential for several cellular processes. Here we report the characterization of a Saccharomyces cerevisiae novel gene, SDA1, encoding a highly conserved protein, which is essential for cell viability and is localized in the nucleus. Depletion or inactivation of Sda1 cause cell cycle arrest in G(1) by blocking both budding and DNA replication, without loss of viability. Furthermore, sda1-1 temperature-sensitive mutant cells arrest at the non-permissive temperature mostly without detectable structures of polymerized actin, although a normal actin protein level is maintained, indicating that Sda1 is required for proper organization of the actin cytoskeleton. To our knowledge, this is the first mutation shown to cause such a phenotype. Recovery of Sda1 activity restores proper assembly of actin structures, as well as budding and DNA replication. Furthermore we show that direct actin perturbation, either in sda1-1 or in cdc28-13 cells released from G(1) block, prevents recovery of budding and DNA replication. We also show that the block in G(1) caused by loss of Sda1 function is independent of Swe1. Altogether our results suggest that disruption of F-actin structure can block cell cycle progression in G(1) and that Sda1 is involved in the control of the actin cytoskeleton.


Cell Cycle ◽  
2019 ◽  
Vol 18 (4) ◽  
pp. 500-510
Author(s):  
Marta Płonka ◽  
Donata Wawrzycka ◽  
Robert Wysocki ◽  
Magdalena Boguta ◽  
Małgorzata Cieśla

1996 ◽  
Vol 7 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Y Hori ◽  
K Shirahige ◽  
C Obuse ◽  
T Tsurimoto ◽  
H Yoshikawa

A novel cell cycle gene was identified by a computer search for genes partly homologous to known CDC genes, CDC6 of Saccharomyces cerevisiae and CDC18 of Schizosaccharomyces pombe, using the nucleotide sequence data base for S. cerevisiae produced by the Yeast Sequencing Project. The protein sequence coded by the cloned gene was found to be identical to that of purified ORC1 protein. Disruption of the gene and subsequent tetrad analysis revealed that the gene was essential for growth. The function of the gene product was analyzed by depleting the protein from the cell using a mutant haploid strain containing the disrupted ORC1 gene on the chromosome and a galactose-inducible gene coding for HA-tagged ORC1 protein on a single copy plasmid. The HA-tagged protein was expressed during growth in the presence of galactose but began to decrease rapidly upon depletion of galactose. Analysis of the cell cycle progression of the mutant cells by FACS after the removal of galactose from the medium, and microscope observations of cells and their nuclei revealed that the normal progression of 2N cells was immediately impeded as the ORC1 protein started to decrease. This was blocked completely in the cells that had progressed to the S phase under conditions deficient in ORC1 protein followed by cell death. Two-dimensional gel analysis of the replication intermediates after the galactose removal revealed that the depletion of ORC1 protein caused a decrease in the frequency of initiation of chromosomal replication, eventually resulting in the inhibition of replication as a whole. The function of the ORC1 protein in the cell cycle progression of S. cerevisiae is discussed in light of current information on ORC.


Sign in / Sign up

Export Citation Format

Share Document