Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula

Polar Biology ◽  
2012 ◽  
Vol 35 (10) ◽  
pp. 1459-1471 ◽  
Author(s):  
Sarah L. Strauss ◽  
Ferran Garcia-Pichel ◽  
Thomas A. Day
Author(s):  
Yun Xiang ◽  
Shaoshan An ◽  
Man Cheng ◽  
Lijun Liu ◽  
Ying Xie

Litter, the link between soil and plant, is an important part of nutrient return to soil. Deeply understanding the effect of litter decomposition on soil microbiological properties is important for the sustainable development of grasslands. Three plants (Thymus quinquecostatus Celak., Stipa bungeana Trin. and Artemisia sacrorum ledeb.) leaf litter were selected. A simulation experiment using the nylon bag method was conducted to measure the soil microbial biomass carbon and nitrogen, and soil enzyme activity during litter decomposition. The results showed that the decomposition of three leaf litter enhanced soil microbial carbon and nitrogen. The change rate of soil microbial carbon and nitrogen decreased as Ar.S > St.B > Th.Q. The activities of soil invertase, soil urease, and soil nitrate reductase were significantly improved by the coverage of leaf litter. After 741-day litter decomposition, the change rate of soil invertase was from 16.7% to 33.2%. The change rate of soil urease was highest in the Th.Q treatment; St.B treatment and Ar.S treatment followed, and lowest in the control. The change rates of soil nitrate reductase in the St.B and Ar.S treatment were >1000% higher than those of other treatments. The response of soil enzyme activity to litter decomposition “lagged” behind the change of soil microbial biomass. The significant increase of soil microbial biomass and enzyme activity demonstrated that litter decomposition played an important role in maintaining soil ecological function.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Dawei Jiang ◽  
Lifei Chen ◽  
Nan Xia ◽  
Eyram Norgbey ◽  
Desmond Ato Koomson ◽  
...  

Abstract Background Elevated atmospheric CO2 has direct and indirect influences on ecosystem processes. The impact of elevated atmospheric CO2 concentration on carbon and nitrogen transformations, together with the microbial community, was evaluated with water hyacinth (Eichhornia crassipes) in an open-top chamber replicated wetland. The responses of nitrogen and carbon pools in water and wetland soil, and microbial community abundance were studied under ambient CO2 and elevated CO2 (ambient + 200 μL L−1). Results Total biomass for the whole plant under elevated CO2 increased by an average of 8% (p = 0.022). Wetlands, with water hyacinth, showed a significant increase in total carbon and total organic carbon in water by 7% (p = 0.001) and 21% (p = 0.001), respectively, under elevated CO2 compared to that of ambient CO2. Increase in dissolved carbon in water correlates with the presence of wetland plants since the water hyacinth can directly exchange CO2 from the atmosphere to water by the upper epidermis of leaves. Also, the enrichment CO2 showed an increase in total carbon and total organic carbon concentration in wetland soil by 3% (p = 0.344) and 6% (p = 0.008), respectively. The total nitrogen content in water increased by 26% (p = 0.0001), while total nitrogen in wetland soil pool under CO2 enrichment decreased by 9% (p = 0.011) due to increased soil microbial community abundance, extracted by phospholipid fatty acids, which was 25% larger in amount than that of the ambient treatment. Conclusion The study revealed that the elevated CO2 would affect the carbon and nitrogen transformations in wetland plant, water, and soil pool and increase soil microbial community abundance.


2016 ◽  
Vol 3 (10) ◽  
pp. 160361 ◽  
Author(s):  
Anne l-M-Arnold ◽  
Maren Grüning ◽  
Judy Simon ◽  
Annett-Barbara Reinhardt ◽  
Norbert Lamersdorf ◽  
...  

Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests ( Quercus petraea  L.) that were heavily infested by the leaf herbivores winter moth ( Operophtera brumata  L.) and mottled umber ( Erannis defoliaria  L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha −1 and 319 kg N ha −1 , respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.


Sign in / Sign up

Export Citation Format

Share Document