metabolic products
Recently Published Documents


TOTAL DOCUMENTS

981
(FIVE YEARS 140)

H-INDEX

53
(FIVE YEARS 6)

Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Van Hong Thi Pham ◽  
Jaisoo Kim ◽  
Jeahong Shim ◽  
Soonwoong Chang ◽  
Woojin Chung

Microbial enzymes such as protease and amylase are valuable enzymes with various applications, widely investigated for their applications in degradation of organic waste, biofuel industries, agricultural, pharmaceuticals, chemistry, and biotechnology. In particular, extremophiles play an important role in biorefinery due to their novel metabolic products such as high value catalytic enzymes that are active even under harsh environmental conditions. Due to their potentials and very broad activities, this study isolated, investigated, and characterized the protease- and amylase-producing bacterial strain FW2 that was isolated from food waste. Strain FW2 belongs to the genus Bacillus and was found to be closest to Bacillus amyloliquefaciens DSM 7T with a similarity of 99.86%. This strain was able to degrade organic compounds at temperatures from −6 °C to 75 °C (but weak at 80 °C) under a wide pH range (4.5–12) and high-salinity conditions up to 35% NaCl. Maximum enzyme production was obtained at 1200 ± 23.4 U/mL for protease and 2400 ± 45.8 U/mL for amylase for 4 days at pH 7–7.5, 40–45 °C, and 0–10% NaCl. SDS-PAGE analysis showed that the molecular weights of purified protease were 28 kDa and 44 kDa, corresponding to alkaline protease (AprM) and neutral protease (NprM), respectively, and molecular weight of α-amylase was 55 kDa. Degradation food waste was determined after 15 days, observing a 69% of volume decrease. A potential commercial extremozyme-producing bacteria such as strain FW2 may be a promising contributor to waste degradation under extreme environmental conditions.


Author(s):  
Emidio Scarpellini ◽  
Emanuele Rinninella ◽  
Martina Basilico ◽  
Esther Colomier ◽  
Carlo Rasetti ◽  
...  

Background and aims: gut microbiota (GM) is a complex ecosystem containing bacteria, viruses, fungi, and yeasts. It has several functions in the human body ranging from immunomodulation to metabolic. GM derangement is called dysbiosis and is involved in several host diseases. Pre-, probiotics, and symbiotics (PRE-PRO-SYMB) have been extensively developed and studied for GM re-modulation. Herein, we review the literature data regarding the new concept of postbiotics, starting from PRE-PRO-SYMB. Methods: we conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the following keywords and acronyms and their associations: gut microbiota, prebiotics, probiotics, symbiotic, and postbiotics. Results: postbiotics account for PRO components and metabolic products able to beneficially affect host health and GM. The deeper the knowledge about them, the greater their possible uses: the prevention and treatment of atopic, respiratory tract, and inflammatory bowel diseases. Conclusions: better knowledge about postbiotics can be useful for the prevention and treatment of several human body diseases, alone or as an add-on to PRE-PRO-SYMB.


2021 ◽  
Author(s):  
LINGYU KANG ◽  
Huayou Chen ◽  
Tao Feng ◽  
Keyi Li ◽  
Zhong Ni ◽  
...  

The main objective of this research was to explore the dynamic changes of Bifidobacterium and lactic acid bacteria (LAB) in the process of feed fermentation under anaerobic condition, so as to increase the number of fermented bacteria of Bifidobacterium from the aspect of strain combination. The results showed that when Bifidobacterium lactis ( B. lactis, i.e. Bifidobacterium animalis subsp. lactis ) fermented with Bacillus coagulans or Lactobacillus paracasei , the maximum number of B. lactis in those samples was 9.42 times and 4.64 times of that of fermented sample with B. lactis only. The soybean meal was fermented by B. lactis, L. paracasei and B. coagulans , and the number of B. lactis reached the maximum after fermented 10 days, which was 6.13 times of that in unfermented sample. The reducing sugar content and highest activity of α-galactosidase were higher than the control. These results suggest that B . coagulans and L . paracasei can promote the growth of B. lactis . It is inferred that B . coagulans can metabolize normally in aerobic, micro-aerobic and anaerobic environments, consume oxygen, produce digestive enzymes, and cooperate with L . paracasei to produce metabolic products benefit for the growth of B. lactis .


Biology Open ◽  
2021 ◽  
Author(s):  
Kerem Yildirim ◽  
Bente Winkler ◽  
Nicole Pogodalla ◽  
Steffi Mackensen ◽  
Marie Baldenius ◽  
...  

Neuronal processing is energy demanding, and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant functions between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.


Author(s):  
B. Ya. Kyryliv ◽  
A. V. Hunchak ◽  
I. B. Ratych ◽  
B. V. Gutyj

The article is a summary of the literature on the main aspects of the modern bird feeding system. Theoretical aspects and results of experimental research of scientists on the substantiation of parameters of protein and amino acid nutrition are given, which is an important factor that, under appropriate conditions can significantly guarantee the realization of the genetic potential of corresponding breeds and crosses of poultry. It is shown that an important aspect of protein nutrition is the ratio of feed amino acids. Their negative interaction can be caused by a deficiency of one or more amino acids, an imbalance between them, antagonism, and toxicity. This is accompanied by effects on various physiological and biochemical processes, significantly affects appetite, intestinal absorption, renal reabsorption and transport of amino acids, their catabolism, rate of protein decomposition, synthesis, and formation of toxic metabolic products. The data show that the required level of energy for the bird's body is provided by carbohydrates (mainly of plant origin) and lipids (fat supplements of various origins). It is noted that lipids promote the absorption, transport, and deposition of fat-soluble vitamins. The effectiveness of using fat supplements as energy depends on their source. At the same time, among the indispensable nutrients that have a significant impact on growth intensity, reproductive quality, poultry productivity, and biological value of products, an important role is played by macro-and micronutrients. Many researchers emphasize that along with the use of traditional feeds in poultry feeding, the possibilities of non-traditional cereals rich in protein and lipids are not fully used. A limiting factor in their use is the presence in their composition of anti-nutrients contained in many feeds. Once in the digestive tract of animals, they negatively affect the absorption of feed nutrients. In most cases, the consumption of such feed by animals is manifested in growth retardation, increased feed consumption, hormonal effects, and, less frequently, in the dysfunction of certain organs.


2021 ◽  
Vol 5 (4) ◽  
pp. 236-244
Author(s):  
K. Bekbayev ◽  
M. Akim ◽  
Zh. Nabiyeva

Currently, dark fermentation is the most practically applicable for the implementation of biotechnological  roduction of hydrogen. However, this process has certain limiting factors, since a significant part of the substrates are converted into various metabolic products, but not into H2 . Therefore, it is necessary to develop optimal conditions for energy recovery in the form of gaseous molecular hydrogen. Various carbohydrate-containing raw materials for hydrogen production often require pretreatment before they can be used by microorganisms. Dilute acid pretreatment represents a promising way to increase biohydrogen production. However, during acid hydrolysis of carbohydrate-containing wastes, in addition to the released soluble sugars, inhibitors of enzymatic processing, such as furfural and 5-HMF, acetic and propionic acids, etc., can accumulate. In this regard, it is necessary to select the optimal conditions for the efficient production of biohydrogen. This study investigated the production of biohydrogen during the microbial fermentation of sugars in a dilute solution of a molasses-based acid hydrolyzate using Escherichia coli and a multiple mutant. The results of the experiments showed that molasses is a valuable product as a source of carbon and energy for microorganisms in the production of biohydrogen, as well as for the production of biomass for the further production of various products with high added value.


2021 ◽  
Vol 22 (23) ◽  
pp. 12786
Author(s):  
Thomas Köhler ◽  
Elke Schwier ◽  
Janina Praxenthaler ◽  
Carmen Kirchner ◽  
Dietrich Henzler ◽  
...  

The “normal” immune response to an insult triggers a highly regulated response determined by the interaction of various immunocompetent cells with pro- and anti-inflammatory cytokines. Under pathologic conditions, the massive elevation of cytokine levels (“cytokine storm”) could not be controlled until the recent development of hemoadsorption devices that are able to extract a variety of different DAMPs, PAMPs, and metabolic products from the blood. CytoSorb® has been approved for adjunctive sepsis therapy since 2011. This review aims to summarize theoretical knowledge, in vitro results, and clinical findings to provide the clinician with pragmatic guidance for daily practice. English-language and peer-reviewed literature identified by a selective literature search in PubMed and published between January 2016 and May 2021 was included. Hemoadsorption can be used successfully as adjunct to a complex therapeutic regimen for various conditions. To the contrary, this nonspecific intervention may potentially worsen patient outcomes in complex immunological processes. CytoSorb® therapy appears to be safe and useful in various diseases (e.g., rhabdomyolysis, liver failure, or intoxications) as well as in septic shock or cytokine release syndrome, although a conclusive assessment of treatment benefit is not possible and no survival benefit has yet been demonstrated in randomized controlled trials.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 656
Author(s):  
Vincent Hort ◽  
Eric Abadie ◽  
Nathalie Arnich ◽  
Marie-Yasmine Dechraoui Bottein ◽  
Zouher Amzil

In recent decades, more than 130 potentially toxic metabolites originating from dinoflagellate species belonging to the genus Karenia or metabolized by marine organisms have been described. These metabolites include the well-known and large group of brevetoxins (BTXs), responsible for foodborne neurotoxic shellfish poisoning (NSP) and airborne respiratory symptoms in humans. Karenia spp. also produce brevenal, brevisamide and metabolites belonging to the hemi-brevetoxin, brevisin, tamulamide, gymnocin, gymnodimine, brevisulcenal and brevisulcatic acid groups. In this review, we summarize the available knowledge in the literature since 1977 on these various identified metabolites, whether they are produced directly by the producer organisms or biotransformed in marine organisms. Their structures and physicochemical properties are presented and discussed. Among future avenues of research, we highlight the need for more toxin occurrence data with analytical techniques, which can specifically determine the analogs present in samples. New metabolites have yet to be fully described, especially the groups of metabolites discovered in the last two decades (e.g tamulamides). Lastly, this work clarifies the different nomenclatures used in the literature and should help to harmonize practices in the future.


Author(s):  
Michael Phillips ◽  
Felix Grun ◽  
Peter Schmitt

Abstract Background: Radiation exposure causes oxidative stress, eliciting production of metabolites that are exhaled in the breath as volatile organic compounds (VOCs). We evaluated breath VOCs as potential biomarkers for use in radiation biodosimetry. Methods: Five anesthetized non-human primates receive total body irradiation (TBI) of three daily fractions of 120 cGy per day for three days, resulting in a cumulative dose of 10.8 Gy. Breath samples were collected prior to irradiation and after each radiation fraction, and analyzed with gas chromatography mass spectrometry. Results: TBI elicited a prompt and statistically significant increase in the abundance of several hundred VOCs in the breath, including some that were increased more than five-fold, with100% sensitivity and 100% specificity for radiation exposure. The most significant breath VOC biomarkers of radiation mainly comprised straight-chain n-alkanes (e.g. hexane), as well as methylated alkanes (e.g. 3-methyl-pentane) and alkane derivatives (e.g. 2-butyl-1-octanol), consistent with metabolic products of oxidative stress. An unidentified breath VOC biomarker increased more than ten-fold following TBI, and rose linearly with the total cumulative dose of radiation (R2=0.92). Conclusions: TBI of non-human primates elicited increased production of breath VOCs consistent with increased oxidative stress. These findings provide a rational basis for further evaluation of breath VOC biomarkers in human radiation biodosimetry.


Sign in / Sign up

Export Citation Format

Share Document