Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study

2015 ◽  
Vol 25 (9) ◽  
pp. 2657-2664 ◽  
Author(s):  
Xian Fu Luo ◽  
Yi Yang ◽  
Jing Yan ◽  
Xue Qian Xie ◽  
Huan Zhang ◽  
...  
Radiology ◽  
2015 ◽  
Vol 277 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Xian Fu Luo ◽  
Xue Qian Xie ◽  
Shu Cheng ◽  
Yi Yang ◽  
Jing Yan ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3825-3825
Author(s):  
Nelson Hamerschlak ◽  
Laercio Rosemberg ◽  
Alexandre Parma ◽  
Fernanda F. Assir ◽  
Frederico R. Moreira ◽  
...  

Abstract Magnetic Ressonance Imaging (MRI) using T2 star (T2*) tecnique appears to be a very useful method for monitoring iron overload and iron chelation therapy in thalassaemia. In Brazil, we have around 400 thalassaemic major patients all over the country. They were treated with hipertransfusion protocols and desferroxamine and/or deferiprone chelation. We developed a cooperative program with the Brazilian Thalassaemic Patients Association (ABRASTA) in order to developT2* tecnique in Brazil to submit brazilian patients to an annual iron overload monitoring process with MRI.. We performed the magnetic ressonance T2* using GE equipment (GE, Milwaukee USA), with validation to chemical estimation of iron in patients undergoing liver biopsy. Until now, 60 patients were scanned, median age=23,2 (12–54); gender: 18 male (30%) and 42 female (70%). The median ferritin levels were 2030 ng/ml (Q1=1466; Q3=3296). As other authors described before, there was a curvilinear inverse correlation between iron concentration by biopsy, liver T2*(r=0,92) and also there were a correlation with ferritin levels. We also correlated myocardial iron measured by T2* with ventricular function.. As miocardial iron increased, there was a progressive decline in ejection fraction and no significant correlation was found between miocardial T2* and the ferritin levels. Liver iron content can be predicted by ferritin levels. On the other hand, cardiac disfunction is the most important cause of mortality among thalassaemic patients. Since Miocardio iron content cannot be predicted from serum ferritin or liver iron, and ventricular function can only detect those with advance disease, intensification and combination of chelation therapy, guided by T2* MRI tecnique should reduce mortality from the reversible cardiomyopathy among thalassaemic patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2059-2059
Author(s):  
Maya Otto-Duessel ◽  
Casey Brewer ◽  
Aleya Hyderi ◽  
Jens Lykkesfeldt ◽  
Ignacio Gonzalez-Gomez ◽  
...  

Abstract Abstract 2059 Introduction: Iron dextran injections are often used to induce iron overload in rodents, for the purposes of assessing iron chelation therapy. In gerbils, we have previously described that deferasirox therapy preferentially clears hepatocellular iron when compared with reticuloendothelial stores. Ascorbate deficiency, which is common in humans with iron overload, produces similar profound disparities between reticuloendothelial and parenchymal iron stores. We postulated that iron-induced ascorbate deficiency might be exaggerating reticuloendothelial iron retention in gerbils receiving deferasirox therapy. This study examined the effect of supplemental ascorbate on spontaneous iron loss and deferasirox chelation efficiency in the iron-dextran loaded gerbil. Methods: 48 female gerbils underwent iron dextran loading at 200 mg/kg/week for 10 weeks. Sixteen animals were sacrificed at 11 weeks to characterize iron loading; eight were on standard rodent chow and eight had chow supplemented with 2250 ppm of ascorbate. 32 additional animals that were not ascorbate supplemented during iron loading transitioned into the chelation phase. Half were subsequently placed on ascorbate supplemented chow and both groups were assigned to receive either deferasirox 100 mg/kg/day five days per week or sham chelation. Animals received iron chelation for twelve weeks. Liver histology was assessed using H & E and Prussian blue stains. Iron loading was ranked and graded on a five-point scale by an experienced pathologist screened to the treatment arm. Iron quantitation in liver and heart was performed by atomic absorption. Results: Table 1 one summarizes the findings. During iron dextran loading, ascorbate supplementation lowered wet weight liver iron concentration but not liver iron content suggesting primarily changes in tissue water content. Spontaneous iron losses were insignificant, regardless of ascorbate therapy. Deferasirox lowered liver iron content 56% (4.7% per week) in animals without ascorbate supplementation and 48.3% (4.0% per week) with ascorbate supplementation (p=NS). Cardiac iron loading, unloading and redistribution were completely unaffected by ascorbate supplementation. Spontaneous iron redistribution was large (1.9% – 2.3% per week). Deferasirox chelation did not lower cardiac iron to a greater degree than spontaneous cardiac iron redistribution. Histologic grading paralleled tissue wet weight iron concentrations. Ascorbate treatment lowered the rank and absolute iron score in liver during iron loading (p=0.003) and there was a trend toward lower iron scoring in sham treated animals (p=0.13). Ascorbate had no effect on histological score or relative compartment distributions of iron in deferasirox chelated animals (p=0.5). Ascorbate supplementation was sufficient to increase total plasma ascorbate levels from 25 ± 12.2 uM to 38.4 ± 11 uM at 10 weeks (p=0.03). In the liver, ascorbate increased from 1203 ± 212 nmol/g of tissue to 1515 ± 194 nmol/g of tissue (p=0.01) with supplementation. No significant change in total ascorbate was observed in the heart. Discussion: We hypothesized that ascorbate supplementation might improve reticuloendothelial iron accessibility to deferasirox by facilitating redox cycling. Although gerbils synthesize their own ascorbate, supplementation was able to raise both serum and hepatic total ascorbate levels. However, increasing ascorbate did not change either the amount or distribution of tissue iron in deferasirox-treated animals. Disclosures: Nick: Novartis: Employment. Wood:Novartis: Research Funding; Ferrokin Biosciences: Consultancy.


1988 ◽  
Vol 32 (2) ◽  
pp. 214-219 ◽  
Author(s):  
D.M. LEIGHTON ◽  
J.F. CAMPO ◽  
R. MATTHEWS ◽  
R.G. SEPHTON

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3208-3208
Author(s):  
Aileen W. Zhen ◽  
Josephine Volovetz ◽  
Paula G. Fraenkel

Abstract Abstract 3208 Iron overload is an important cause of morbidity and death in patients with hemoglobinopathies, transfusion-dependent anemias, and hereditary hemochromatosis. As humans have no means of excreting iron, regulation of iron homeostasis depends on limiting intestinal iron absorption and optimizing iron release from macrophages to developing erythrocytes. Hepcidin, a peptide hormone produced in the liver, modulates intestinal iron absorption and macrophage iron release via effects on ferroportin. Hepcidin is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. We conducted a small-scale chemical screen and found that the isoflavone genistein, a major dietary component of soybeans, enhanced Hepcidin transcript levels in zebrafish embryos. Furthermore genistein treatment increased Hepcidin transcript levels and Hepcidin promoter activity in human hepatocytes (HepG2 cells) in a Stat3 and Smad4-dependent manner. To evaluate genistein's effect in a mammalian model, we placed groups of 4 four-week old male C57BL/6 mice on an iron-sufficient, low soy diet (AIN93G containing 35 mg of iron/kg) supplemented with 0, 250, or 500 mg of genistein per kg of food for 7 weeks, and then sacrificed the animals for analysis. Plasma genistein levels (mean±SE) at the time of sacrifice were 0.015±0.015, 0.52±0.173, and 2.07±0.65 micromolar, respectively. Compared to mice not treated with genistein, the 250 mg/kg dose produced a significant increase in hepatic Hepcidin (HAMP1) transcript levels (1.49±0.10 vs 0.93±0.10, p=0.01), while the 500 mg/kg dose did not. Although liver iron content, spleen iron content, and weight gain were not significantly different among the groups, the ratio of Hepcidin expression to liver iron content was significantly increased in the animals treated with genistein 250 mg/kg compared to controls (0.013±0.0009 vs 0.0074±0.00068, p=0.0068). In conclusion, genistein is the first orally administered small molecule experimental drug shown to increase Hepcidin transcript levels in vivo. Future experiments will evaluate the effects of genistein on genetic models of iron overload syndromes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 966-966
Author(s):  
Haven M. Allard ◽  
Marcela G. Weyhmiller ◽  
Ashutosh Lal ◽  
Ellen B. Fung

Abstract Introduction When monitoring bone health in patients with hemoglobinapathies, it is unknown if iron in surrounding tissues can lead to inaccuracies in the 2-dimensional assessment by Dual Energy X-ray Absorptiometry (DXA). Objective The aims of this study were: 1) to determine if the accuracy of lumbar spine assessment by DXA is affected by high liver iron concentration in patients with Sickle Cell Disease (SCD) or Thalassemia (Thal), 2) to test the effect of high tissue iron on vertebral Z-scores using phantoms, 3) to explore the ability to account for potential high-iron content effects when performing DXA examinations. Methods This study consisted of a retrospective chart review of data collected by the Children’s Hospital & Research Center Oakland, Bone Density Clinic and Iron Measurement Program. Data from both DXA and Super Conducting Quantum Interference Device (SQUID) examinations collected between 2002 and 2013 from were abstracted. Only those patients with a diagnosis of SCD or Thal, who had a DXA and SQUID measurement within the same year were divided into an iron overload group (liver iron concentration (LIC) >3,000 µg Fe/g wet) and low iron (LIC <500 µg Fe/g wet) group. These patients were compared with healthy controls of which only 13 had both DXA and SQUID tests, 34 had DXA only. The 34 healthy controls without a SQUID test were included because it was assumed, based on their health screen that their liver-iron content would not interfere with DXA. In order to explore aim 1, a lumbar spine scan, by DXA, of each subject was re-analyzed to compare the derived areal bone mineral density (aBMD) Z-scores of lumbar vertebrae that are covered by the liver (presumed L1 or L1/L2) with the Z-scores of the lumbar vertebrae not covered by the liver (L3/L4). To explore aim 2, phantoms were designed to mimic the geometry of iron loaded tissues in order to explore the contribution of iron in specific tissues on the accuracy of DXA assessments. Phantoms were constructed using KNOX® brand gelatin and iron(II) sulfate heptahydrate and had concentrations ranging from 3,000 to 7,000 ug Fe/g gelatin. The iron-loaded phantoms were positioned obtusely overlying L1/L2 of the DXA daily quality control phantom to mimic the position of the liver. All data were analyzed by STATA ver.9.2 and were considered significant with a p<0.05. Results Data from 102 total visits abstracted from 88 subjects [19 SCD (13 F), 24 Thal (12 F), age: 30.1 ± 11.9 years, mean ± SD], and 45 healthy controls (24 F, age: 25.4 ± 11.0 yrs) were analyzed. The SCD and Thal group had an average LIC by SQUID of 4651 ± 2079 µg Fe/g wet tissue and serum ferritin of 5408±2706 ng/mL; while the healthy controls, with both a DXA and a SQUID (n=17), had an average LIC of 251±144. Average aBMD Z-score of the lumbar spine L1-L4 in the Thal group was -2.0 ± 1.1 , the SCD was -2.0 ± 1.6 and the healthy controls: -0.3 ± 0.9. However, when individual vertebrae are analyzed separately, a significant difference was observed between the lumbar spine L1 BMD Z-scores compared to the combined means of L3/L4 Z-scores in the iron loaded population (Table 1). The discrepancy was even greater in subjects with LIC >5000 ug/g wet tissue. These findings were reproduced using heavily iron loaded phantoms. Conclusions Initial results for this study show that there is a relationship between liver iron content and lumbar spine aBMD Z-scores when evaluated by DXA. The BMD Z-score for L1 appears to be more significantly affected by the liver iron content then L2, which was unanticipated. When evaluating patients with liver iron content >3,000 ug/g wet tissue, it is important to consider the effects of iron contribution from the liver on the DXA spine scans and delete L1 and/or L2 from the total Z-score prior to making an interpretation. Failing to do so may under diagnose low bone mass in this at risk patient population. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4024-4024
Author(s):  
Carla Casu ◽  
Mariam Aghajan ◽  
Rea Oikonomidau ◽  
Shuling Guo ◽  
Brett P. Monia ◽  
...  

Abstract Patients affected by non-transfusion dependent thalassemia (NTDT) do not require chronic blood transfusion for survival. However, transfusion-independence in such patients is not without side effects. Ineffective erythropoiesis (IE), the hallmark of disease, leads to a variety of serious clinical morbidities. In NTDT the master regulator of iron homeostasis, hepcidin, is chronically repressed. Consequently, patients absorb abnormally high levels of iron, which eventually requires iron chelation to prevent the clinical sequelaes associated with iron overload. It has been shown that in mice affected by NTDT (Hbbth3/+), a second-generation antisense oligonucleotide (Tmprss6-ASO) can reduce expression of transmembrane serine protease Tmprss6, the major suppressor of hepcidin expression. This leads to reduction of hemichrome formation in erythroid cells, amelioration of IE and splenomegaly, and increased hemoglobin levels (Guo et al, JCI, 2013). Now we propose the use of Tmprss6-ASO in combination with iron chelators for the treatment of NTDT using Hbbth3/+ mice as a preclinical model. Our hypothesis is that use of chelators will benefit from the positive effect of Tmprss6-ASO on erythropoiesis and iron absorption, further ameliorating organ iron content. To this end, Hbbth3/+ animals were treated with Tmprss6-ASO at 100 mg/kg/week for 6 weeks with or without the iron chelator deferiprone (DFP) at a dose of 1.25 mg/ml. Additional animals were treated with DFP alone. We fed the animals with a commercial or physiological diet, containing 200 or 35 ppm of iron, respectively. We did not observe major differences in the treated animals fed the commercial or physiological iron diet and, for this reason, the data were combined for simplicity. Administration of DFP alone was successful in decreasing organ iron content. Compared to untreated Hbbth3/+ animals, we observed a reduction of 30% and 33% in the liver and spleen, respectively, and no change in the kidney. However, erythropoiesis was not improved (looking at IE, splenomegaly, RBC production and total Hb levels). This was associated with increased serum iron levels (+25%). In Tmprss6-ASO treated Hbbth3/+ animals, we observed an improvement in liver iron content (36% reduction), amelioration of IE, and increased RBC and Hb synthesis (~2 g/dL). Compared to treatment with Tmprss6-ASO alone, combination of DFP with Tmprss6-ASO achieved the same level of suppression of Tmprss6 in the liver (~90%) and reduction of serum iron parameters. This was associated with improvement of IE, decreased reticulocyte counts and splenomegaly, and increased RBC and Hb synthesis (~2 g/dL). While we observed that both Tmprss6-ASO and DFP separately reduced liver iron content to the same extent (~30-36%), combination treatment further reduced iron concentrations in the liver and kidney (69% and 19%, respectively), with no changes in the spleen. Additional analyses are in progress to evaluate the amount of hepcidin in serum as well as expression of erythroferrone, the erythroid regulator of hepcidin. Our first conclusion is that administration of an iron chelator alone is not sufficient to improve erythropoiesis despite that organ iron content is reduced. We speculate that when iron is removed from the liver, hepcidin expression becomes more susceptible to the suppressive effect of IE rather than the enhancing effect of reduced liver organ iron concentration. In addition, the combined effect of iron mobilized from organs and unchanged (or even augmented) iron absorption leads to increased serum iron concentration. As we have shown previously, amelioration of IE in this model requires decreased erythroid iron intake and hemichrome formation. Therefore, iron chelation alone is likely insufficient to improve erythropoiesis. Additional experiments are in progress to further elucidate this mechanism. Our second conclusion is that use of Tmprss6-ASO together with DFP combines the best effects of these two drugs, in particular on erythropoiesis and organ iron content. In animals that received the combined treatment, kidney and liver iron concentrations were further decreased compared to the single treatments. This indicates that Tmprss6-ASO might be extremely helpful in the treatment of NTDT and it could further improve iron related-chelation therapies. Disclosures Casu: Merganser Biotech LLC: Employment; Isis Pharmaceuticals, Inc.: Employment. Aghajan:Isis Pharmaceuticals, Inc.: Employment. Guo:Isis Pharmaceuticals, Inc.: Employment. Monia:Isis Pharmaceuticals, Inc.: Employment. Rivella:bayer: Consultancy, Research Funding; isis Pharmaceuticals, Inc.: Consultancy, Research Funding; merganser Biotech LLC: Consultancy, Research Funding, Stock options , Stock options Other.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1421-1421 ◽  
Author(s):  
Robert I. Liem ◽  
Cynthia Rigsby ◽  
Richard J. Labotka ◽  
Andrew DeFreitas ◽  
Alexis A. Thompson

Abstract BACKGROUND: Assumptions about iron loading as well as the utility of ferritin to predict transfusional iron overload among individuals with sickle cell disease (SCD) are largely based on extrapolation from data generated in patients with thalassemia major (TM). Yet recent studies suggest the natural history of iron overload in patients with SCD differs significantly from chronically transfused patients with TM. We sought to evaluate the extent of myocardial and hepatic siderosis using noninvasive imaging in chronically transfused patients with SCD and examine its clinical associations, including relationship to long-term trends in serum ferritin, transfusion history, chelation status and markers of hemolysis and inflammation. METHODS: We evaluated 17 subjects (mean age 15±3.6 yrs, range 9 to 20). The mean transfusion duration was 7.3±3.6 yrs (range 2 to 15). Thirteen (76%) patients were on chelation with deferasirox at the time of screening; 4 were not on chelation Rx. MRI T2*/R2* of the heart and liver using a multiple gradient echo sequence was performed on a single 1.5T GE scanner. Hepatic iron concentration (HIC) values were predicted from liver R2* values. RESULTS: Mean HIC in subjects was 9.9±6.7 mg/gm liver dry weight (range 2.5 to 20.8) and was ≥15 mg/gm in 6/17 (35%) subjects. The mean long-term serum ferritin (past 5 yrs, or duration of transfusion if &lt; 5yrs) was 2318±1122 ng/mL (range 541 to 4225). Using Pearson’s correlation coefficient, we observed a significant relationship between HIC and ferritin (r=0.765, p=&lt;0.001). We generated a receiver operator characteristic (ROC) curve to assess the utility of ferritin as a predictor of elevated HIC, using a threshold HIC thought to predict serious iron-related complications. A ferritin cut-off value ≥2164 ng/mL correctly identified 80% of cases of HIC ≥15 mg/gm (AUC 0.96, p=0.003) in our subjects with 83% sensitivity and 73% specificity. Despite markedly elevated HIC and ferritin values in some subjects, none had myocardial siderosis. All 17 subjects had cardiac MRI T2* values in the normal range &gt; 25 ms. Cardiac iron load measured by T2* did not correlate with HIC or serum ferritin. We examined C-reactive protein (CRP) and B-type natriuretic peptide (BNP) as markers for inflammation and myocardial strain, respectively, in our subjects but neither demonstrated a significant relationship to ferritin or MRI findings. BNP, however, did correlate modestly with both age (r=−0.574, p=0.013) and left ventricular ejection fraction on cardiac MRI (r=0.510, p=0.036). A subset of subjects (n=8) had histologic iron measurements by percutaneous liver biopsy (LBx) within 6 months of MRI. While liver iron content by LBx correlated significantly with HIC by MRI (r=0.759, p=0.03), liver iron content by LBx did not correlate with ferritin (r=0.312, p=0.452). CONCLUSION: We found that serum ferritin is a good predictor of liver iron by MRI R2*, and that long term ferritin values ≥2164 ng/mL predict significant hepatic iron overload as assessed by this noninvasive method. We did not observe appreciable cardiac iron loading in our subjects with SCD, which otherwise might have been predicted by elevated HIC alone, as in individuals with TM. These data suggest that reliable, long term surveillance of transfusion-induced iron overload in SCD may be achieved using serum ferritin and HIC by MRI R2* as surrogate markers of hepatic siderosis rather than relying on liver iron content measured invasively by LBx. Also, previously determined thresholds for significant cardiac iron loading in TM, based on degree of hepatic siderosis, may not be applicable in SCD. Further investigation into alternative mechanisms of iron loading or distribution in these related but distinct disorders is warranted.


Sign in / Sign up

Export Citation Format

Share Document