Stationary Solutions of the Vlasov–Poisson System with Diffusive Boundary Conditions

2015 ◽  
Vol 25 (2) ◽  
pp. 315-342 ◽  
Author(s):  
Emre Esentürk ◽  
Hyung Ju Hwang ◽  
Walter A. Strauss
2009 ◽  
Vol 161 (1) ◽  
pp. 1403-1414 ◽  
Author(s):  
A. V. Latyshev ◽  
A. A. Yushkanov

Analysis ◽  
2006 ◽  
Vol 26 (4) ◽  
Author(s):  
Achim Schulze

We prove the existence and stability of stationary solutions to the Vlasov–Poisson System with spherical symmetry, which describe static shells, i.e., the support of their densities is bounded away from the origin. We use a variational approach which was established by Y. Guo and G. Rein.


2001 ◽  
Vol 15 (10n11) ◽  
pp. 1663-1667
Author(s):  
LINCOLN D. CARR ◽  
CHARLES W. CLARK ◽  
WILLIAM P. REINHARDT

We present all stationary solutions to the nonlinear Schrödinger equation in one dimension for box and periodic boundary conditions. For both repulsive and attractive nonlinearity we find expected and unexpected solutions. Expected solutions are those that are in direct analogy with those of the linear Schödinger equation under the same boundary conditions. Unexpected solutions are those that have no such analogy. We give a physical interpretation for the unexpected solutions. We discuss the properties of all solution types and briefly relate them to experiments on the dilute-gas Bose-Einstein condensate.


Let us consider the electron plasma response with an arbitary degree of degeneracy to an external ac electric field. Surface absorption of the energy of an electric field is calculated.


Author(s):  
Jörg-Uwe Löbus

We consider certain Boltzmann type equations on a bounded physical and a bounded velocity space under the presence of both reflective as well as diffusive boundary conditions. We introduce conditions on the shape of the physical space and on the relation between the reflective and the diffusive part in the boundary conditions such that the associated Knudsen type semigroup can be extended to time [Formula: see text]. Furthermore, we provide conditions under which there exists a unique global solution to a Boltzmann type equation for time [Formula: see text] or for time [Formula: see text] for some [Formula: see text] which is independent of the initial value at time 0. Depending on the collision kernel, [Formula: see text] can be arbitrarily small.


2001 ◽  
Vol 08 (01) ◽  
pp. 19-27 ◽  
Author(s):  
R. F. Streater

We study coupled nonlinear parabolic equations for a fluid described by a material density ρ and a temperature Θ, both functions of space and time. In one dimension, we find some stationary solutions corresponding to fixing the temperature on the boundary, with no-escape boundary conditions for the material. For the special case, where the temperature on the boundary is the same at both ends, the linearized equations for small perturbations about a stationary solution at uniform temperature and density are derived; they are subject to boundary conditions, Dirichlet for Θ and no-flow conditions for the material. The spectrum of the generator L of time evolution, regarded as an operator on L2[0,1], is shown to be real, discrete and non-positive, even though L is not self-adjoint. This result is necessary for the stability of the stationary state, but might not be sufficient. The problem lies in the fact that L is not a sectorial operator, since its numerical range is ℂ.


2003 ◽  
Vol 336 (9) ◽  
pp. 703-708 ◽  
Author(s):  
François Castella ◽  
Philippe Chartier ◽  
Erwan Faou

2004 ◽  
Vol 16 (03) ◽  
pp. 281-330 ◽  
Author(s):  
M. BARO ◽  
H.-CHR. KAISER ◽  
H. NEIDHARDT ◽  
J. REHBERG

We study a stationary Schrödinger–Poisson system on a bounded interval of the real axis. The Schrödinger operator is defined on the bounded domain with transparent boundary conditions. This allows us to model a non-zero current through the boundary of the interval. We prove that the system always admits a solution and give explicit a priori estimates for the solutions.


Sign in / Sign up

Export Citation Format

Share Document