How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

Coral Reefs ◽  
2016 ◽  
Vol 35 (3) ◽  
pp. 1083-1095 ◽  
Author(s):  
Jennifer Elliott ◽  
Mark Patterson ◽  
Natalie Summers ◽  
Céline Miternique ◽  
Emma Montocchio ◽  
...  
2015 ◽  
Vol 2 ◽  
Author(s):  
Corvin Eidens ◽  
Torsten Hauffe ◽  
Elisa Bayraktarov ◽  
Christian Wild ◽  
Thomas Wilke

2019 ◽  
Vol 6 (9) ◽  
pp. 190958 ◽  
Author(s):  
Paris V. Stefanoudis ◽  
Molly Rivers ◽  
Struan R. Smith ◽  
Craig W. Schneider ◽  
Daniel Wagner ◽  
...  

Worldwide coral reefs face catastrophic damage due to a series of anthropogenic stressors. Investigating how coral reefs ecosystems are connected, in particular across depth, will help us understand if deeper reefs harbour distinct communities. Here, we explore changes in benthic community structure across 15–300 m depths using technical divers and submersibles around Bermuda. We report high levels of floral and faunal differentiation across depth, with distinct assemblages occupying each depth surveyed, except 200–300 m, corresponding to the lower rariphotic zone. Community turnover was highest at the boundary depths of mesophotic coral ecosystems (30–150 m) driven largely by taxonomic turnover and to a lesser degree by ordered species loss (nestedness). Our work highlights the biologically unique nature of benthic communities in the mesophotic and rariphotic zones, and their limited connectivity to shallow reefs, thus emphasizing the need to manage and protect deeper reefs as distinct entities.


Author(s):  
Esther van der Ent ◽  
Bert W. Hoeksema ◽  
Nicole J. de Voogd

The cyanobacteriospongeTerpios hoshinotais expanding its range across the Indo-Pacific. This species can have massive outbreaks on coral reefs, actively kill corals it overgrows and affect the entire benthic community. Although it has received much attention on the post-outbreak follow-up, little is known about its ecology, habitat preferences, and the possible environmental triggers that cause its outbreaks. We present a baseline study in the Spermonde Archipelago, Indonesia, whereT. hoshinotawas first observed in 2012. We surveyed 27 reefs and recorded patches between 14 and 217 cm2, at four reef sites (~15% cover). The sponge was found on both mid-shelf and outer shelf reefs but not close to the coast and the city of Makassar. Differences in benthic community structure, as well as spatial variables relating to the on-to-offshore gradient in the Spermonde archipelago, neither constrained nor promoted its expansion. Patches of the sponge were mostly overgrowing branching corals, belonging to Acroporidae species. Genetic variation withinT. hoshinotawas studied by sequencing partitions of the mitochondrial CO1 and nuclear ribosomal 28S gene. Two haplotypes were found within the Spermonde archipelago, which differed from the CO1 sequence in GenBank. The present study provides an indication of habitat preferences ofT. hoshinotain non-outbreak conditions, although it is still unclear which environmental conditions may lead to the onset of its outbreaks.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43843 ◽  
Author(s):  
Nichole N. Price ◽  
Todd R. Martz ◽  
Russell E. Brainard ◽  
Jennifer E. Smith

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanna Bae ◽  
In-Young Ahn ◽  
Jinsoon Park ◽  
Sung Joon Song ◽  
Junsung Noh ◽  
...  

AbstractGlacier retreat is a major long-standing global issue; however, the ecological impacts of such retreats on marine organisms remain unanswered. Here, we examined changes to the polar benthic community structure of “diatoms” under current global warming in a recently retreated glacial area of Marian Cove, Antarctica. The environments and spatiotemporal assemblages of benthic diatoms surveyed in 2018–2019 significantly varied between the intertidal (tidal height of 2.5 m) and subtidal zone (10 and 30 m). A distinct floral distribution along the cove (~ 4.5 km) was characterized by the adaptive strategy of species present, with chain-forming species predominating near the glacier. The predominant chain-forming diatoms, such as Fragilaria striatula and Paralia sp., are widely distributed in the innermost cove over years, indicating sensitive responses of benthic species to the fast-evolving polar environment. The site-specific and substrate-dependent distributions of certain indicator species (e.g., F. striatula, Navicula glaciei, Cocconeis cf. pinnata) generally reflected such shifts in the benthic community. Our review revealed that the inner glacier region reflected trophic association, featured with higher diversity, abundance, and biomass of benthic diatoms and macrofauna. Overall, the polar benthic community shift observed along the cove generally represented changing environmental conditions, (in)directly linked to ice-melting due to the recent glacier retreat.


Limnologica ◽  
2014 ◽  
Vol 49 ◽  
pp. 68-72 ◽  
Author(s):  
Todd Wellnitz ◽  
Se Yeon Kim ◽  
Eric Merten

2012 ◽  
Vol 69 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Christopher R. S. Barrio Froján ◽  
Kevin G. MacIsaac ◽  
Andrew K. McMillan ◽  
María del Mar Sacau Cuadrado ◽  
Philip A. Large ◽  
...  

Abstract Barrio Froján, C. R. S., MacIsaac, K. G., McMillan, A. K., del Mar Sacau Cuadrado, M., Large, P. A., Kenny, A. J., Kenchington, E., and de Cárdenas González,  E. 2012. An evaluation of benthic community structure in and around the Sackville Spur closed area (Northwest Atlantic) in relation to the protection of vulnerable marine ecosystems. – ICES Journal of Marine Science, 69: 213–222. The benthic macrofaunal community structure is investigated within and around a closed area at Sackville Spur in the Northwest Atlantic to ascertain whether continued exclusion of bottom fishing can be justified. This and other similar closed areas have been introduced by the Northwest Atlantic Fisheries Organisation (NAFO) to protect areas of likely occurrence of taxa that are indicative of vulnerable marine ecosystems (VMEs) from the damaging effects of bottom-contact fishing gear. Results reveal subtle yet significant differences in macrofaunal assemblage composition and community structure between inside and outside the closed area, between above and below the 1200-m depth contour (i.e. the historical depth limit of fishing), and between areas where dense sponge spicule mats are either present or absent. Differences were observed in many assemblage metrics; however, the most revealing was the greater abundance, biomass, diversity, and number of VME indicative taxa inside the closed area than outside. Overall community composition is also significantly different between treatments. Depth, sediment temperature, and the proportion of clay within sediments are important in shaping the faunal assemblage. The importance of the effects of fishing is discussed, although it is not possible to ascertain if fishing is the direct cause behind observed differences in the macrofaunal assemblage. A continued closure of the area is recommended, as well as options for streamlining the evaluation process of other closed areas.


Sign in / Sign up

Export Citation Format

Share Document