Interannual variability of transport and bifurcation of the North Equatorial Current in the tropical North Pacific Ocean

2012 ◽  
Vol 30 (1) ◽  
pp. 177-185 ◽  
Author(s):  
Fangguo Zhai ◽  
Dunxin Hu
2001 ◽  
Vol 67 (6) ◽  
pp. 1097-1103 ◽  
Author(s):  
Satoshi Ishikawa, ◽  
Kunihiro Suzuki, ◽  
Tadashi Inagaki, ◽  
Shun Watanabe, ◽  
Yobuo Kimura, ◽  
...  

2016 ◽  
Vol 29 (18) ◽  
pp. 6693-6710 ◽  
Author(s):  
Yi-Chia Hsin

Abstract An ensemble of ocean reanalysis products is utilized to quantify the long-term tendencies of pathways and along-pathway transports of the three surface equatorial currents (North Equatorial Current, North Equatorial Countercurrent, and northern branch of the South Equatorial Current) in the North Pacific Ocean during the period of the 1900s–2000s. This study uses 12 ocean reanalysis products in the ensemble for the period after the 1960s, while only 2 Simple Ocean Data Assimilation (SODA) products are taken into consideration for the period prior to 1960s. The analyses indicate that the three currents in the western (eastern) Pacific Ocean have more southern (northern) mean central positions and tend to move southward (northward) over the past 100 years. All three currents have weakening tendencies, with the exception of the North Equatorial Current having intensified in the western Pacific Ocean. The Sverdrup dynamics, which directly relates the wind-driven circulation in the interior ocean to wind stress curl and Earth rotation, can be applied to simply address the long-term changes of intensities and pathways of the three surface currents in the tropical North Pacific Ocean.


2014 ◽  
Vol 44 (2) ◽  
pp. 558-575 ◽  
Author(s):  
Dongliang Yuan ◽  
Zhichun Zhang ◽  
Peter C. Chu ◽  
William K. Dewar

Abstract Absolute geostrophic currents in the North Pacific Ocean are calculated from the newly gridded Argo profiling float data using the P-vector method for the period of 2004–11. The zonal geostrophic currents based on the Argo profile data are found to be stronger than those based on the traditional World Ocean Atlas 2009 (WOA09) data. A westward mean geostrophic flow underneath the North Equatorial Countercurrent is identified using the Argo data, which is evidenced by sporadic direct current measurements and geostrophic calculations in history. This current originates east of the date line and transports more than 4 × 106 m3 s−1 of water westward in the subsurface northwestern tropical Pacific Ocean. The authors name this current the North Equatorial Subsurface Current. The transport in the geostrophic currents is compared with the Sverdrup theory and found to differ significantly in several locations. Analyses have shown that errors of wind stress estimation cannot account for all of the differences. The largest differences are found in the area immediately north and south of the bifurcation latitude of the North Equatorial Current west of the date line and in the recirculation area of the Kuroshio and its extension, where nonlinear activities are vigorous. It is, therefore, suggested that the linear dynamics of the Sverdrup theory is deficient in explaining the geostrophic transport of the tropical northwestern Pacific Ocean.


Sign in / Sign up

Export Citation Format

Share Document