Effect of Reducing Nitric Oxide in Rumex K-1 Leaves on the Photoprotection of Photosystem II Under High Temperature with Strong Light

2016 ◽  
Vol 35 (4) ◽  
pp. 1118-1125 ◽  
Author(s):  
Xingkai Che ◽  
Zishan Zhang ◽  
Liqiao Jin ◽  
Meijun Liu ◽  
Yuting Li ◽  
...  
Author(s):  
Charilaos Goussias ◽  
Yiannis Sanakis ◽  
Vasili Petrouleas
Keyword(s):  

2019 ◽  
Vol 963 ◽  
pp. 226-229
Author(s):  
Kidist Moges ◽  
Mitsuru Sometani ◽  
Takuji Hosoi ◽  
Takayoshi Shimura ◽  
Shinsuke Harada ◽  
...  

We demonstrated an x-ray photoelectron spectroscopy (XPS)-based technique to reveal the detailed nitrogen profile in nitrided SiO2/4H-SiC structures with sub-nanometer-scale-resolution. In this work, nitric oxide (NO)- and pure nitrogen (N2)-annealed SiO2/4H-SiC(0001) structures were characterized. The measured results of NO-annealed samples with various annealing duration indicate that preferential nitridation just at the SiO2/SiC interfaces (~0.3 nm) proceeds in the initial stage of NO annealing and a longer duration leads to the distribution of nitrogen in the bulk SiO2 within few nanometers of the interface. The high-temperature N2 annealing was found to induce not only SiO2/SiC interface nitridation similarly to NO annealing but also SiO2 surface nitridation.


2010 ◽  
Vol 430 (1) ◽  
pp. 70-71 ◽  
Author(s):  
D. R. Yarullina ◽  
O. A. Smolentseva ◽  
A. I. Kolpakov ◽  
O. N. Ilinskaya

2017 ◽  
Vol 198 ◽  
pp. 121-134 ◽  
Author(s):  
Kazuki Tahara ◽  
Ahmed Mohamed ◽  
Kousuke Kawahara ◽  
Ryo Nagao ◽  
Yuki Kato ◽  
...  

Development of an efficient photo-anode system for water oxidation is key to the success of artificial photosynthesis. We previously assembled photosystem II (PSII) proteins, which are an efficient natural photocatalyst for water oxidation, on a gold nanoparticle (GNP) to prepare a PSII–GNP conjugate as an anode system in a light-driven water-splitting nano-device (Noji et al., J. Phys. Chem. Lett., 2011, 2, 2448–2452). In the current study, we characterized the fluorescence property of the PSII–GNP conjugate by static and time-resolved fluorescence measurements, and compared with that of free PSII proteins. It was shown that in a static fluorescence spectrum measured at 77 K, the amplitude of a major peak at 683 nm was significantly reduced and a red shoulder at 693 nm disappeared in PSII–GNP. Time-resolved fluorescence measurements showed that picosecond components at 683 nm decayed faster by factors of 1.4–2.1 in PSII–GNP than in free PSII, explaining the observed quenching of the major fluorescence peak. In addition, a nanosecond-decay component arising from a ‘red chlorophyll’ at 693 nm was lost in time-resolved fluorescence of PSII–GNP, probably due to a structural perturbation of this chlorophyll by interaction with GNP. Consistently with these fluorescence properties, degradation of PSII during strong-light illumination was two times slower in PSII–GNP than in free PSII. The enhanced durability of PSII is an advantageous property of the PSII–GNP conjugate in the development of an artificial photosynthesis device.


Sign in / Sign up

Export Citation Format

Share Document