The Effect of Foliar-Applied Manganese in Mineral and Complex Forms with Amino Acids on Certain Defense Mechanisms of Cucumber (Cucumis sativus L.) Against Powdery Mildew

2017 ◽  
Vol 37 (2) ◽  
pp. 481-490 ◽  
Author(s):  
S. Eskandari ◽  
A. H. Khoshgoftarmanesh ◽  
B. Sharifnabi
2013 ◽  
Vol 126 (8) ◽  
pp. 2149-2161 ◽  
Author(s):  
Xiaoming He ◽  
Yuhong Li ◽  
Sudhakar Pandey ◽  
Brain S. Yandell ◽  
Mamta Pathak ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8250
Author(s):  
Peng Zhang ◽  
Yuqiang Zhu ◽  
Shengjun Zhou

Background Cucumber (Cucumis sativus L.) is a widely cultivated vegetable crop, and its yield and quality are greatly affected by various pathogen infections. Sphaerotheca fuliginea is a pathogen that causes powdery mildew (PM) disease in cucumber. However, the genes involved in the resistance to PM in cucumber are largely unknown. Methods In our study, a cucumber PM resistant cultivated variety “BK2” and a susceptible cultivated variety “H136” were used to screen and identify differential expressed genes (DEGs) under the S. fuliginea infection. Results There were only 97 DEGs between BK2 and H136 under the control condition, suggesting a similarity in the basal gene expression between the resistant and susceptible cultivated varieties. A large number of hormone signaling-related DEGs (9.2% of all DEGs) between resistant and susceptible varieties were identified, suggesting an involvement of hormone signaling pathways in the resistance to PM. In our study, the defense-related DEGs belonging to Class I were only induced in susceptible cultivated variety and the defense-related DEGs belonging to Class II were only induced in resistant cultivated variety. The peroxidase, NBS, glucanase and chitinase genes that were grouped into Class I and II might contribute to production of the resistance to PM in resistant cultivated variety. Furthermore, several members of Pathogen Response-2 family, such as glucanases and chitinases, were identified as DEGs, suggesting that cucumber might enhance the resistance to PM by accelerating the degradation of the pathogen cell walls. Our data allowed us to identify and analyze more potential genes related to PM resistance.


2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2005 ◽  
Vol 112 (2) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Sakata ◽  
N. Kubo ◽  
M. Morishita ◽  
E. Kitadani ◽  
M. Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document