Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics

2013 ◽  
Vol 199 (9) ◽  
pp. 775-783 ◽  
Author(s):  
Subramanian Mariappan ◽  
Wieslaw Bogdanowicz ◽  
Ganapathy Marimuthu ◽  
Koilmani Emmanuvel Rajan
2004 ◽  
Vol 36 (05) ◽  
Author(s):  
D Eser ◽  
P Zwanzger ◽  
S Aicher ◽  
C Schüle ◽  
TC Baghai ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
pp. 403-408
Author(s):  
Athanasios Tselebis ◽  
Emmanouil Zoumakis ◽  
Ioannis Ilias

In this concise review, we present an overview of research on dream recall/affect and of the hypothalamic–pituitary–adrenal (HPA) axis, discussing caveats regarding the action of hormones of the HPA axis (mainly cortisol and its free form, cortisol-binding globulin and glucocorticoid receptors). We present results of studies regarding dream recall/affect and the HPA axis under physiological (such as waking) or pathological conditions (such as in Cushing’s syndrome or stressful situations). Finally, we try to integrate the effect of the current COVID-19 situation with dream recall/affect vis-à-vis the HPA axis.


Pain Medicine ◽  
2021 ◽  
Vol 22 (4) ◽  
pp. 994-1000
Author(s):  
Haewon Lee ◽  
Jennifer A Punt ◽  
David C Miller ◽  
Ameet Nagpal ◽  
Clark C Smith ◽  
...  

Abstract Myth Corticosteroid injection for the treatment of pain and inflammation is known to decrease the efficacy of the messenger ribonucleic acid (mRNA) vaccines for coronavirus disease 2019 (COVID-19). Fact There is currently no direct evidence to suggest that a corticosteroid injection before or after the administration of an mRNA COVID-19 vaccine decreases the efficacy of the vaccine. However, based on the known timeline of hypothalamic-pituitary-adrenal (HPA) axis suppression following epidural and intraarticular corticosteroid injections, and the timeline of the reported peak efficacy of the Pfizer-BioNTech and Moderna vaccines, physicians should consider timing an elective corticosteroid injection such that it is administered no less than 2 weeks prior to a COVID-19 mRNA vaccine dose and no less than 1 week following a COVID-19 mRNA vaccine dose, whenever possible.


Author(s):  
Susanne Fischer ◽  
Tabea Schumacher ◽  
Christine Knaevelsrud ◽  
Ulrike Ehlert ◽  
Sarah Schumacher

Abstract Background Less than half of all individuals with post-traumatic stress disorder (PTSD) remit spontaneously and a large proportion of those seeking treatment do not respond sufficiently. This suggests that there may be subgroups of individuals who are in need of augmentative or alternative treatments. One of the most frequent pathophysiological findings in PTSD is alterations in the hypothalamic–pituitary–adrenal (HPA) axis, including enhanced negative feedback sensitivity and attenuated peripheral cortisol. Given the role of the HPA axis in cognition, this pattern may contribute to PTSD symptoms and interfere with key processes of standard first-line treatments, such as trauma-focused cognitive behavioural therapy (TF-CBT). Methods This review provides a comprehensive summary of the current state of research regarding the role of HPA axis functioning in PTSD symptoms and treatment. Results Overall, there is preliminary evidence that hypocortisolaemia contributes to symptom manifestation in PTSD; that it predicts non-responses to TF-CBT; and that it is subject to change in parallel with positive treatment trajectories. Moreover, there is evidence that genetic and epigenetic alterations within the genes NR3C1 and FKBP5 are associated with this hypocortisolaemic pattern and that some of these alterations change as symptoms improve over the course of treatment. Conclusions Future research priorities include investigations into the role of the HPA axis in day-to-day symptom variation, the time scale in which biological changes in response to treatment occur, and the effects of sex. Furthermore, before conceiving augmentative or alternative treatments that target the described mechanisms, multilevel studies are warranted.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 520 ◽  
Author(s):  
Katiuska Satué ◽  
Esterina Fazio ◽  
Ana Muñoz ◽  
Pietro Medica

In cycling females, the periovulatory period is characterized by stimulation of the hypothalamic pituitary adrenal (HPA) axis. The aim of present study was to analyze the pattern and interrelationships among adrenocorticotropic hormone (ACTH), cortisol (CORT), aldosterone (ALD) and electrolytes (sodium—Na+, potassium—K+ and chloride—Cl−) during periovulatory period in cycling mares. Venous blood samples were obtained daily from a total of 23 Purebred Spanish broodmares, aged 7.09 ± 2.5 years, from day −5 to day +5 of estrous cycle, considering day 0, the day of ovulation. Plasma ACTH was measured by a fluorescent immunoassay kit, serum CORT and ALD by means of a competitive ELISA immunoassay, and plasma Na+, K+ and Cl− were quantified by an analyzer with selective electrodes for the three ions. ACTH showed higher concentrations at day 0 compared to days −5 to −1 and +1 to +3 (p < 0.05). CORT showed higher concentrations at day 0 compared to days −5 to −2 and +1 to +5 (p < 0.05). ALD showed higher concentrations at day 0 compared to days −5 to −2 (p < 0.05) and +2 (p < 0.05). Na+ and Cl− showed higher concentrations at day 0, compared to day −5 and +5. K+ showed lower concentrations at day 0 compared to day +1 (p < 0.05). The significant correlations obtained between ACTH and CORT (r = 0.20) and between ACTH and ALD (r = 0.32) suggest that although ACTH may have an effect both on CORT and ALD, there are other very important determinants that could be considered. Hence, it is possible to presume that the pituitary adrenocortical response and ALD may be involved in the ovulatory mechanisms without a direct relation with electrolyte pattern.


Sign in / Sign up

Export Citation Format

Share Document